수소화기상증착공정을 이용한 마그네슘하이드라이드 미세분말 합성

강태희¹ · 김진호^{1†} · 한규성¹ · 김병관² ¹한국세라믹기술원 이천분원, ²(주)한국에너지재료

Synthesis of Sub-Micron MgH₂ using Hydriding Thermal Chemical Vapor Synthesis

TAEHEE KANG¹, JINHO KIM^{1†}, KYUSUNG HAN¹, BYUNGGOAN KIM²

¹Korea Institute of Ceramic Engineering & Techology, Icheon branch, 467-843, Republic of Korea ²Korea Energy Materials Co.Ltd, 409, Daegu Technopark, 704-230, Republic of Korea

Abstract >> This work describes the hydriding chemical vapor synthesis (HCVS) of the MgH₂ in a hydrogen atmosphere and the product's hydriding-dehydridng properties. Mg powder was used as a starting material to synthesize MgH₂ and uniformly heated to a temperature of 600° C for Mg vaporization. The effects of hydrogen pressure on the morphology and the composition of HCVS-MgH₂ were examined by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is clearly seen that after the HCVS process, the particle size of synthesized MgH₂ was drastically reduced to the submicron or micrometer-scale and these showed different shapes (needle-like nanofibers and angulated plate) depending on the hydrogen pressure. It was found that after the HCVS process, the H₂ desorption temperature of HCVS-MgH₂ decreased from 380 to 410°C, and the minimum hydrogen desorption tempreature of HCVS-MgH₂ was achieved during subsequent hydriding-dehydriding cycles.

Key words : MgH₂(마그네슘 하이드라이드), Hydriding chemical vapor synthesis(수소화기상증착), Mg(마 그네슘), Hydrogen storage(수소저장)

1. 서 론

금속수소화물은 높은 무게당 수소저장밀도와 안 전성을 갖추고 있기 때문에, Ni-MH 2차전지의 음극 및 수소저장탱크의 소재로 많은 연구가 진행되고 있 다. 특히, 마그네슘(Mg)은 수소와 이온결합을 통한

 MgH₂를 형성하면서 7.6wt%의 높은 가역수소저장밀

 도와 우수한 가격경쟁력을 갖추고 있는 매우 유망한

 수소저장합금 소재이다^{1,2)}. 그러나 MgH₂는 275°C에

 서 1bar의 평탄수소압(equilibrium H₂ pressure)을 갖

 고 있기 때문에 수소의 흡탈장 속도가 300°C 이하에

 서 매우 낮고, 그로 인하여 연료전지 자동차와 같은

 portable device의 적용에 많은 제약을 받게 된다. 따

 라서 수소 흡방출에 관한 작동온도를 낮추는 것이

 MgH₂ 상용화에 가장 중요한 이슈라고 할 수 있다.

 MgH₂ 수소 흡방출 특성 개선을 위하여 기계적분

[†]Corresponding author : jino.kim@kicet.re.kr [접수일 : 2012.9.28 수정일 : 2012.10.23 게재확정일 : 2012.10.26] Copyright ⓒ 2012 KHNES

쇄를 이용한 나노분말제조 및 촉매특성을 갖는 원소 와의 결합등에 관한 연구가 진행되고 있다³⁻⁵⁾. 그러나 기계적 분쇄를 이용한 MgH2 나노분말 제조는 결정 구조 붕괴로 인한 가역용량의 감소 및 분말의 응집 (agglomeration) 현상이 발생하고 되고, 촉매특성을 갖 는 원소와의 결합 역시 가역용량의 감소를 가져오는 결과를 초래하게 된다. 최근 Mg 기상화(vaporization) 에서 응결(condensation) 통한 나노 Mg계 합금에 관 한 연구가 보고되고 있다^{6,7)}. 이러한 기상-고상 반응 을 통한 MgH2 합성은 고체 Mg 내에서의 느린 수소 확산속도로 인한 MgH2의 비활성화 거동특성 및 수 소 흡방출 특성을 향상시키는 것으로 보고되고 있다. Choi. 등은 chemical vapor synthesis(CVS) 공정을 이 용한 Mg-5%Ti 나노분말을 합성하여 우수한 수소화반 응 특성을 보고하였으며⁸⁾, Zhu 등은 수소분위기에서 진행되는 hydriding chemcial vapor deposition(HCVD) 공정을 이용하여 Fiber 형상의 고순도 MgH2 합성을 보고한 바 있다⁹⁾.

본 연구에서는 수직형태의 수소화기상증착(Hydriding chemical vapor synthesis, HCVS) 반응관을 제작하고, 고압의 수소분위기 하에서 고순도의 MgH₂ 미세분말 을 합성하였다. 또한, 반응관 내 수소압력(H₂ pressure) 및 증착위치가 MgH₂ 입도(particle size), 형태(shape) 및 순도(purity)에 미치는 영향에 대하여 고찰하였다.

2. 실험 방법

2.1 수소화기상증착 반응관

본 연구에서는 고순도의 MgH₂를 합성하기 위한 수직형태의 수소화기상증착(HCVS) 반응관을 설계 하였다. Fig. 1은 HCVS 반응관의 (a)사진을 보여주 고 있다. HCVS 반응관은 Inconel 601 재질로 제작되 었으며, 반응관 내부에는 Mg 분말을 담을 수 있는 알루미나 용기가 설치된다. 가스 누설 방지를 위하여 Cu 재질의 개스킷을 사용하였다. 반응관 아래부분은 튜브형 furnace에 장입될 수 있는 구조를 가지게 되 며, 반응관 뚜겅에는 냉각수 라인 및 수소가스 라인

Fig. 1 (a) HCVS reactor and (b) products deposited on reactor cover after HCVS process

이 설치되어 반응 제어를 하게 된다.

2.2 MgH2 수소화기상증착 합성

Fig. 2는 MgH₂ 합성에 사용된 Mg 분말((주)하나 닉스)의 SEM 관찰결과이다. 균일하고 구상의 형태 를 보이며, 입도측정 결과 약 68µm의 평균 입도를 보이고 있다. XRD 결과에서 pure Mg 분말임을 확인 하였으며, ICP 측정결과 99.8%의 Mg 조성을 나타내 며, 0.2%의 산소는 Mg 분말 표면의 산화막에 기인한 것으로 판단된다.

수소화기상증착 공정은 Mg 분말 수 gram을 알루 미나 반응관에 넣고, 알곤 가스(Ar, 5N)를 이용한 5회 이상 purging 과정으로 반응관 내 분위기 제어 후 진 행된다. 1.0~4.0MPa 고압의 수소를 반응관 내 장입

Fig. 2 SEM image of Mg powders used as starting material in this study

후 Furnace를 100°C/h로 승온하여 600°C에서 24시간 유지하면서 수소화기상증착 공정을 진행하였다.

HCVS-MgH₂ 분말의 조성분석 및 미세구조분석을 위하여 XRD(Rigaku D/Max 2500)와 SEM(JEOL JSM 6701F) 분석을 진행하였다. HCVS-MgH₂ 분말은 5 °C/min, up to 450°C 조건에서 DSC(N-650) 측정으로 열적거동을 분석하였으며, 수소흡방출 특성은 자동 화 Sievert's 장치를 이용하여 측정하였다. 수소흡방 출 측정은 350°C에서 2시간 동안 충분한 탈수소화 반응 후, 각각 350°C 3MPa H₂ & <10³Pa 조건하에서 진행되었다.

3. 결과 및 토의

기상반응을 통해 합성되는 MgH₂ 분말의 수율(yield) 및 형상(shape)은 수소압과 온도에 영향을 받는 것으 로 알려져 있다⁹. 본 연구에서 Mg의 수소화기상증착 은 수십 기압의 수소분위기의 수직형상 반응관에서 진행되며, 반응 완료 후 냉각수가 흐르는 반응관 뚜 껑 부분에서 하얀 색의 분말이 관찰되었다(Fig. 1(b)). Fig. 3은 1.0 - 4.0MPa 수소압력의 수소화기상증착 후 반응관 뚜껑에 증착된 하얀 색 분말의 XRD 측정 결과이다. 1.0MPa 수소압력에서 미량의 Mg(OH)₂ 상 이 관찰되지만, 모든 압력하에서 MgH₂ 가 main 결정 상으로 합성되는 것을 알 수 있다.

Fig. 3 XRD patterns of (a) Mg-starting material, (b) 1.0 MPa H_2 HCVS-MgH₂, (c) 3.0 MPa H_2 HCVS-MgH₂, and (d) 4.0 MPa H_2 HCVS-MgH₂ (\bigcirc : Mg, \blacksquare : MgH₂, \blacktriangledown : Mg(OH)₂)

일반적으로 고온, 고압의 수소분위기하에서 Mg은 다음과 같은 3가지 반응을 거치게 된다⁹⁾.

 $Mg(g) + H_2(g) \leftrightarrow MgH_2(s)$ (1)

 $Mg(g) \leftrightarrow Mg(s)$ (2)

 $Mg(s) + H_2(g) \leftrightarrow MgH_2(s)$ (3)

반응관 뚜껑에 증착되는 HCVS-MgH₂는 (1) 반응 에 의한 것이며, 일정 수소압 이하의 조건에서는 (2) 의 반응에 의한 Mg 분말이 관찰될 것으로 예상된다. 그러나 XRD 결과에서 1.0MPa 이상의 모든 수소압 력 조건에서 Mg 상은 관찰되지 않았으며, pure MgH₂ 상이 합성되는 것을 알 수 있다. 따라서 1.0MPa 이상 의 수소압력에서 수소화기상증착을 통한 pure MgH₂ 합성이 가능하며, (1) 반응이 우세하게 일어남을 의 미한다.

Fig. 4는 다양한 수소압력하에서 합성된 HCVS-MgH₂ 의 SEM 관찰 결과이다. 구상 형태의 수십 µm를 갖는 Mg 분말과 달리, HCVS-MgH₂는 입도 및 형태가 수 소압력에 큰 영향을 받는 것을 알 수 있다. 결과에서 수소압력이 증가할수록 HCVS-MgH₂ 분말의 입도는 수 µm에서 sub µm로 감소하며, 형태는 판상(angulated

(C)

Fig. 4 SEM images of HCVS-MgH_2: (a) 1.0 MPa H_2, (b) 3.0 MPa H_2, (c) 4.0 MPa H_2)

plate)에서 needle-like 형태로 변하는 것을 알 수 있 다. Zhu 등의 보고에 의하면 상대적으로 낮은 온도와

Fig. 5 Differential scanning calorimeter (DSC) analysis of HCVS-MgH_2: (a) 1.0 MPa H_2, (b) 3.0 MPa H_2, (c) 4.0 MPa H_2 H_2

높은 수소압력의 조건에서 fiber-like, straight, longer and thinner 형태의 MgH₂ 형성이 이루어지며 [9], 이 러한 경향은 본 연구결과와 일치하는 것을 알 수 있 다. 그러나 높은 수소압력하에서 (1) 반응이 우세해 질수록 thin & needle-like 형태의 MgH₂가 형성되는 원인에 대해서는 명확하게 밝혀지지 않았으며, 향후 에 이에 대한 추가적인 연구가 필요할 것으로 판단 된다.

HCVS-MgH₂의 수소방출 특성을 평가하기 위하여 DSC 분석을 수행하였다. Fig. 5는 HCVS-MgH₂의 DSC 분석결과를 보여주며, 흡열반응(endothermic) 피크가 380°C부터 410°C 영역에서 관찰된다. 결과에서 HCVS-MgH₂의 형태와 상관없이 단일 수소방출 피크(single hydrogen desorption peak)가 관찰되며, 이러한 거동 은 Ball-milling 공정 및 gas-gas 반응을 통해 제조되 는 MgH₂ 분말의 경우 나타나는 γ-MgH₂ 상이 없다 는 것을 의미한다⁴. Fig. 5에서는 HCVS 공정의 수소 압력이 높을수록 수소발열 피크가 관찰되는 온도가 낮아지며, 이러한 경향은 수소방출특성이 MgH₂의 형 태에 영향을 받는, 즉 수소 이동길이가 감소하는 thin & needle-like 형태의 HCVS-MgH₂가 더 우수한 수소 방출 특성을 보이는 것으로 판단할 수 있다. 또한 Saita 등의 보고에 의하면, 수소기상증착으로 합성된 MgH₂

Fig. 6 H_2 absorption and desorption profiles of HCVS-MgH_2 with needle-like and angulated plate morphology at 350°C during cycling

의 경우 342°C 온도에서 10분 이내에 이론용량(7.6wt%) 에 근접한 수소가역저장용량을 보이고 있다¹⁰⁾. 따라서 본 연구에서도 HCVS-MgH₂에 대하여 자동화 Sievert's 장치를 이용하여 수소흡방출 특성 평가를 진행하였다.

Fig. 6(a)은 350°C에서 사이클 진행에 따른 HCVS-MgH2의 수소흡장 거동 변화를 보여주고 있다. 결과 에서 HCVS 합성압력이 높을수록 수소저장용량이 커지는, 즉 needle-like MgH2가 수소저장특성이 더 우 수한 것을 알 수 있다. 또한 사이클 진행에 따른 퇴화 거동 역시 Needle-like MgH2는 거의 용량감소가 나 타나지 않지만, Angulated plate의 경우에는 10th 사 이클에서 초기용량 대비 약 5%의 용량 감소를 보이 고 있다. Fig. 6(b)는 HCVS-MgH2의 수소방출 특성 을 보여주고 있다. 결과에서 HCVS-MgH2의 수소방 출속도는 흡장속도에 비하여 늦게 최대용량에 도달 하는 것을 알 수 있다. 높은 수소압력에서 합성된 Needle-like MgH₂는 1st cycle에서 약 5.7wt%의 가역 수소저장용량을 보이며, 10th 사이클에서 5.5wt%의 용량을 보이고 있다. 반면에 Angulated plate 형태의 MgH2는 약 5wt%의 가역수소저장용량을 보이고 있 다. 이상의 결과에서 주목할만한 점은 HCVS-MgH2 의 경우 특별한 전처리(pre-treatment) 없이 2-3rd 사 이클 이내에 활성화가 이루어졌다는 점이며, 거의 1st 사이클에서 95% 이상의 가역수소저장용량을 보이고 있다는 것이다.

4. 결 론

수소화기상증착(HCVS)을 이용하여 합성한 MgH2 의 morphology에 따른 수소화반응 특성을 평가하였 다. 수직형상으로 다인된 HCVS 반응관을 이용하여 pure MgH2를 합성할 수 있었으며, 냉각수가 흐르는 반응관 뚜껑에 하얀 색 MgH2 분말이 형성된다. Mg 의 수소화거동은 주변온도와 수소압력에 크게 영향 을 받으며, 1.0MPa 이상의 수소압력에서 pure MgH2 가 합성되는 것을 확인하였다. HCVS 공정의 수소압 력이 높을수록 angulated plate 형태에서 Needle-like 형태로 변하고, 입도 역시 수 μm에서 sub μm로 감소 하는 것을 알 수 있다. HCVS-MgH2에 대한 수소흡 방출 특성 평가에서, Needle-like & Angulted plate 형태의 MgH2는 각각 5.7wt%와 5.0wt%의 가역수소 저장용량을 보이며, 우수한 활성화 거동을 보인다. 또한 10th 사이클 이후에도 초기용량의 약 5% 이하 의 감소만을 보이는 퇴화거동을 보이고 있다.

후 기

이 연구(논문)은 교육과학기술부의 지원으로 수행 되는 21세기 프론티어 연구개발사업(수소에너지사 업단)의 일환으로 수행되었습니다.

참고 문 헌

- M.Y. Song, S.H. Baek and H.R. Park, "Hydriding and Dehydriding Rates of Magnesium-Nickel Alloy Fabricated by Milling under Hydrogen", Trans. of the Korean Hydrogen and New Energy Society Vol. 22, No. 6, pp. 787-793.
- X.D. Yao and G.Q. Lu, "Magnesium-based materials for hydrogen storage: recent advances and future persectives", Chin. Sci. Bull, 53, 2008, 2421-2431.
- 3. D.L. Croston, D.M. Grant, G.S. Walker, "The effect

of titanium oxide based additives on the dehydrogenation and hydrogenation of milled MgH₂", J. Alloys Compd., 492, 2010, pp. 251-258.

- H. Gasan, N. Aydinbeyli, O.N. Celik, Y.M. Yaman, "The dependence of the hydrogen desorption temperature of MgH₂ on its structural and morphological characteristics", J. Alloys Compd., 4897, 2009, pp. 724-729.
- K.G. Kim, Y.S. Kim and T.H. Hong, "Hydrogenation Properties on MgHx-Sc2O3 Composites by Mechanical Alloying", Trans. of the Korean Hydrogen and New Energy Society Vol. 21, No. 2, pp. 81-88.
- O. Freedrichs, L. Kolodziejczyk, J.C. Sanchez-Lopez, C. Lopez-Cartes and A. Fernandez, "Synthesis of nanocrystalline MgH₂ powder by gas-phase condensation and in situ hydridation: TEM, XPS and XRD study", J. Alloys Compd., 434-435, 2007, pp. 721-724.

- W. Li, C. Li, H. Ma and J. Chen, "Magneium nanowires: Enhanced kinetics for hydrogen absorption and desorption", J. Am. Chem. Soc., 129, 2007, pp. 6710-6711.
- Y.J. Choi, J.W. Choi, H.Y. Sohn, T. Ryu, K.S. Hwang and Z.Z. Fang, "Chemical vapor synthesis of Mg-Ti nanopowder mixture as a hydrogen storage material", Int. J. Hydrogen Energy, 34, 2009, pp. 7700-7706.
- C. Zhu, H. Hayashi, I. Saita and T. Akiyama, "Direct synthesis of MgH₂ nanofibers at different hydrogen pressures", Int. J. Hydrogen Energy, 34, 2009, pp. 7283-7290.
- I. Saita, T. Toshima, S. Tanda and T. Akiyama, "Hydrogen storage of MgH₂ synthesized by hydriding chermical vapor deposition", J. Alloys Compd., 446-447, 2007, pp. 80-83.