DOI QR코드

DOI QR Code

Distribution Behavior of Bi and Pb Between Molten PbO-SiO2 Slag and Bi

용융(熔融) PbO-SiO2계(系) 슬래그와 Bi 사이의 Bi와 Pb의 분배거동(分配擧動)

  • Kim, Se-Jong (Dept. of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Kim, Eung-Jin (Dept. of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Sohn, Ho-Sang (Dept. of Materials Science and Metallurgical Engineering, Kyungpook National University)
  • 김세종 (경북대학교 금속신소재공학과) ;
  • 김응진 (경북대학교 금속신소재공학과) ;
  • 손호상 (경북대학교 금속신소재공학과)
  • Received : 2012.07.10
  • Accepted : 2012.09.17
  • Published : 2012.10.30

Abstract

The equilibrium distribution of bismuth and lead between molten PbO-$SiO_2$ slag and bismuth phase was studied in the temperature range of $775^{\circ}C$ to $850^{\circ}C$ in a MgO crucible. The oxygen partial pressure of atmosphere was controlled by $P_{CO2}/P_{CO}$ ratio. The value of $(%PbO)_{slag}/[%Pb]_{metal}$ increased with increasing $SiO_2$ content of slag, and the value of $(%Bi_2O_3)_{slag}/[%Bi]_{metal}$ decreased with increasing $SiO_2$ content of slag. The concentration of Pb in metal increased with increasing temperature. These experimental results agreed well with the thermodynamic prediction.

용융 PbO-$SiO_2$계 슬래그와 Bi를 $775{\sim}850^{\circ}C$의 마그네시아 도가니 중에서 평형시켜 Pb와 Bi의 평형분배에 대하여 조사하였다. 분위기 중의 산소분압은 $P_{CO2}/P_{CO}$의 비율을 조정하여 제어하였다. Pb의 분배비인 (%PbO)/[%Pb]는 슬래그 중의 $SiO_2$ 농도가 증가함에 따라 증가하였으며, Bi의 분배비인 ($%Bi_2O_3$)/[%Bi]는 슬래그 중의 $SiO_2$ 농도가 증가함에 따라 감소하였다. 그리고 반응 온도가 높을수록 금속 상중의 Pb 농도는 증가하였다. 이러한 결과는 열역학적으로 예측한 결과와 잘 일치하였다.

Keywords

References

  1. Kim, Byung-Su, Lee, Jae-chun and Jeong, Jin-ki, 2009: Current Status on the Pyrometallurgical Process for Recovering Precious and Valuable Metals from Waste Electrical and Electronic Equipment(WEEE) Scrap, J. Korean Inst. Resources Recycling, 18(4), pp. 14-23.
  2. Shin, Dong-Yeop, et al., 2008: Pyro-metallurgical Treatment of Used OA Parts for the Recovery of Valuable Metals, J. Korean Inst. Resources Recycling, 17(2), pp.46-54.
  3. Oh, Jae-Hyun, et al., 2012: Technological Modules for the Recycling of Urban Mines and Non-Ferrous Smelting Process in Korea, J. Korean Inst. Resources Recycling, 21(1), pp. 3-16.
  4. Tamura, Y. and Minani, Y., 1993: Lead Smelting in Takehara Refinery, Shigen-to-Sosai, 109(12), pp. 1029- 1032. https://doi.org/10.2473/shigentosozai.109.1029
  5. John L. Bray, 1963: "Chapter 14 Lead ", Non-Ferrous Production Metallurgy 2nd Ed., p. 329, John Wiley & Sons. Inc., New York, USA.
  6. Azakami, T. and Awakura, Y., 1999: Extractive Metallurgy, The Japan Inst. Metal, Sendai, Japan, pp. 94-98.
  7. Kim, Se-Jong, Son, In-Joon and Sohn, Ho-Sang, 2012: The Selective Removal of Sb and Pb from Molten Bi-Pb-Sb Alloy by Oxidation, J. Korean Inst. Resources Recycling, 21(4), pp.53-59.
  8. Fruehan, R. J., 1971: Mass Spectrometric Determination of Activities for Alloys with Complex Vapor Species: Bi-Pb and Bi-Tl, Metall. Trans., 2(4), pp.1213-1218. https://doi.org/10.1007/BF02664254
  9. Yoon, S.W. and Lee, H. M., 1998: A Thermodynamic Study of Phase Equilibria in the Sn-Bi-Pb Solder System, Calphad, 22(2), pp. 167-178. https://doi.org/10.1016/S0364-5916(98)00022-4
  10. Kowalski, P.J., Spencer, P.J. and Neuschutz, D., 1995: 3 Phase diagram, SLAG ATLAS, 2nd Ed, Verein Deutscher Eisenhuttenleute(VDEh), p. 95, Velag Stahleisen GmbH, D-Dusseldorf, Germany.
  11. Kopyto, M. et al, 2009: THERMODYNAMIC PROPERTIES OF $Sb_{2}O_{3}-SiO_{2} $AND PbO-$Sb_{2}O_{3}-SiO_{2} $ LIQUID SOLUTIONS, Archives of Metallurgy and Materials, 54(3), pp. 811- 822.