DOI QR코드

DOI QR Code

Effect of Subsurface Drip Pipes Spacing on the Yield of Lettuce, Irrigation Efficiency, and Soil Chemical Properties in Greenhouse Cultivation

지중 점적관수 호스 설치 간격이 상추 수량, 관수량 및 토양 화학성에 미치는 영향

  • Park, Jin Myeon (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science) ;
  • Lim, Tae Jun (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Seong Eun (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science)
  • 박진면 (농촌진흥청 국립원예특작과학원 원예특작환경과) ;
  • 임태준 (농촌진흥청 국립원예특작과학원 원예특작환경과) ;
  • 이성은 (농촌진흥청 국립원예특작과학원 원예특작환경과)
  • Received : 2012.07.30
  • Accepted : 2012.10.11
  • Published : 2012.10.30

Abstract

This research was carried out to investigate the effect of installation spacing of subsurface drip irrigation pipe on the mineral content, nutrient uptake, yield of lettuce, water requirement for irrigation, and soil chemical properties in greenhouse cultivation. Semi-forcing and retarding culture were implemented in this experiment, with four treatments containing overhead spray irrigation and three subsurface irrigation lateral spacing intervals of 30, 40, 50 cm at a depth of 30 cm from soil surface, respectively. Each mineral content of lettuce grown under subirrigation system did not show significant difference between treatments, however the uptake of nutrients was lower at 50 cm-distance. The yield was largest in 30 cm-subirrigation (SI), followed by 40 cm-SI, overhead spray, and 50 cm-treatment. Water requirement for irrigation was highest in overhead spray, and it was in reverse proportion to the distance of irrigation pipes. $NO_3$-N content in the soil, at a depth of 10 cm, showed a higher value in 50 cm-SI, followed by 40 cm-SI, overhead spray and 30 cm-SI. Exchangeable K content was highest in 50 cm-SI, Mg was highest in 40 cm-SI, and Ca was lowest in 30 cm-SI. In conclusion, the lettuce yield was not different between 30 and 40 cm-SI, but water requirement for irrigation was lower as the distance of irrigation pipes was further. And it seems to be needed more precise research on this theme, because crop yield and the dynamics of soil minerals in subsurface irrigation can vary with the depth and distance of irrigation pipes, dripper, water flow depending on the soil texture, and plant response to soil minerals.

본 연구는 시설 하우스 재배에서 지중관수 호스 간격 처리가 상추의 무기성분 함량과 흡수량, 수량, 관수량 및 토양화학성에 미치는 영향을 알아보기 위하여 수행되었다. 상추재배는 반촉성 및 억제재배를 하였으며 시험처리는 분수살수 처리와 지중 호스를 30 cm 깊이에 호스의 배치 간격이 각각 30, 40 및 50 cm 되도록 한 지중관수 처리를 포함하여 총 4처리를 하였다. 지중관수 처리에 의한 상추의 무기성분 함량은 처리간에 차이가 없으나 양분 흡수량은 호스 간격 50 cm 처리에서 가장 낮았다. 수량은 50 cm $\leq$ 분수살수 $\leq$ 40 cm $\leq$ 30 cm 순으로 많았고 관수량은 분수살수 처리가 가장 많았으며 지중관수 처리 간격이 넓을수록 적었다. 토양 양분함량 중 지표 하 10 cm에서 질산태 질소는 50 cm> 40 cm> 분수살수> 30 cm 처리 순으로 많았으며 치환성 칼리함량은 50 cm 처리에서, 마그네슘 함량은 40 cm에서 높았고 칼슘은 30 cm 처리에서 낮았다. 결과적으로 상추 재배에서 지상 분수살수와 지중 점적관수 30 cm 깊이에서 30~40 cm 간격 처리는 수량 차이가 없었으나 관수량은 지중관수에서 호스 간격이 넓을수록 적었다. 지중관수에서 작물의 수량 및 토양 중 양분 변화는 호스의 깊이와 점적기 및 호스간격, 토성에 따른 물의 이동과 작물의 양분 반응에 따라 차이가 있을 수 있어 보다 정밀한 연구가 필요한 것으로 생각되었다.

Keywords

References

  1. Abou Kheira, A.A. and El-Shafie, A.H. 2007. Management of sub-surface drip irrigation system and water saving in greenhouse. In Lamaddalena N. (ed.), Bogliotti C. (ed.), Todorovic M. (ed.), Scardigno A. (ed.). Water saving in Mediterranean agriculture and future research needs [Vol. 1] . Bari: CIHEAM-IAMB, 2007. p. 419-437: 11 ref., 8 tabl., 7 graph. (Options Mediterraneennes: Serie B. Etudes et Recherches; n. 56 - vol. I). Proceedings of the International Conference WASAMED Project (EU contract ICA3-CT-2002-10013), 2007/02/14-17, Valenzano (Italy).
  2. Ayars, J.E., C.J. Phene, R.B. Hutmacher, K.R. Davis, R.A. Schoneman, S.S. Vail, and R.M. Mead. 1999. Subsurface drip irrigation of row crops: Areview of 15 years of research at the water management research laboratory. Agricultural Water Management 42:1-27. https://doi.org/10.1016/S0378-3774(99)00025-6
  3. Blass, S. 1971. Drip irrigation. In: Drip (trickle) and automated irrigation in Israel. Water Commissioners Office, Ministry of Agriculture, Tel Aviv, Israel 1:10-28.
  4. Bucks, D.A., L.J. Erie, O.F. French, F.S. Nakayama, and W.D. Pew. 1981. Subsurface trickle irrigation management with multiple cropping. Trans ASAE 24:1482-1489. https://doi.org/10.13031/2013.34478
  5. Cafe, F.A.C. and J.M. Duniway. 1996. Effect of location of drip irrigation emitters and position of Phytophthora capsici infections in roots on Phytophthora root rot of pepper. Phytopathology 86(12)1364-1369.
  6. Camp, C.R. 1998. Subsurface drip irrigation: a review. Transactions of the ASAE, 41(5):1353-1367. https://doi.org/10.13031/2013.17309
  7. Camp, C.R., F.R. Lamm, R.G. Evans, and C.J. Phene. 2000. Subsurface drip irrigation - past, present and future. In National Irrigation Symposium, November 14-16, Phoenix, Arizina, pp 363-372. ASSE, St. Joseph, MI, USA.
  8. El Awady, M.N., M.F. Ahl El Salam, M.M. El Nawawy, and M.A.El Farrah. 2003. Surface and subsurface irrigation effects on Spinach and sorghum. The IIth Annual Conference of Misr Society of Agr. Eng. Oct. 2003:118-130.
  9. Gunnar, G. 1969. Accumulation of salts in the sub-irrigation of pot plants. Plant and Soil 31(3):425-438. https://doi.org/10.1007/BF01373814
  10. Heidarpour, M., B. Mostafazadeh-Fard, J.A. Koupai and R. Malekian. 2007. The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods. Agricultural Water Management 90:87-94. https://doi.org/10.1016/j.agwat.2007.02.009
  11. Hillel, D. 2004. Introduction to environmental soil physics. Academic Press, New York, NY.
  12. Howell, T.A., A.D. Schneider, and S.R. Evett. 1997. Subsurface and surface microirrigation of corn: Southern high plains. Trans. ASAE 40:635-641. https://doi.org/10.13031/2013.21322
  13. Incrocci, L., F. Malorgio, A. Della Bartola, and A. Pardossi. 2006. The influence of drip irrigation or subirrigation on tomato grown in closed-loop substrate culture with saline water. Scientia Horticulturae 107:365-372. https://doi.org/10.1016/j.scienta.2005.12.001
  14. Kim, J.H, C.S. Kim, T.W. Kim, and J.H. Hong. 2005. Effect on saving water of underground trickle irrigation. J. Biosystems Eng. 30:102-109. https://doi.org/10.5307/JBE.2005.30.2.102
  15. Lamm, F.R., H.L. Manges, L.R. Stone, A.H. Khan, and D.H. Roger. 1995a. Water requirement of subsurface drip irrigated corn in Northwest Kansas. Trans ASAE 38:441-448. https://doi.org/10.13031/2013.27851
  16. Lamm F.R., W.E. Spurgeon, D.H. Rogers, and H.L. Manges. 1995b. Corn production using subsurface drip irrigation. Proc. Fifth Intern Microir Congr Orlando, Florida ASAE Publ 4:388-394.
  17. MIFAFF, 2012. 2011 Current State of Greenhouse and Vegetable Production. p. 66-111. Ministry for Food, Agriculture, Forestry and Fisheries. Seoul.
  18. NIAST. 2000. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  19. Patel, R.M., S.O. Prasher, D. Donnelly, R.B. Bonnell, and R.S. Broughton. 1999. Subirrigation with brackish water for vegetable production in arid regions. Bioresource Technology 70:33-37. https://doi.org/10.1016/S0960-8524(99)00012-7
  20. Phene, C.J. 1995. The sustainability and potential of subsurface drip irrigation. Proc Fifth Int Microirrig Congr Orlando, Florida ASAE Publ 4:359-368.
  21. Phene, C.J., R.B. Hutmacher, K.R. Davis, and R.L. McCormick. 1992. Water-fertilizer management of processing tomatoes. Acta-Horticulturae. 1990, No. 277, 137-143.
  22. Ryu, K.S., S.H. Yoo, and K.C. Song. 1991. Movement of applied nutrients through soils by irrigation. I. Movement of nutrients to the amount of water applied. Korean J. Soil Sci. Fert. 24(2):102-108.
  23. Ryu, K.S., S.H. Yoo, and K.C. Song. 1994. Movement of applied nutrients through soils by irrigation. III. Effect of soil water on the movement of nitrogen. Korean J. Soil Sci. Fert. 27(3):232-237.
  24. Trooien, T.P., F.R. Lamm, L.R. Stone, M. Alam, D.H. Rogers, G.A. Clark, and A.J. Schlegel. 2000. Subsurface drip irrigation using livestock waste water: drip line flow rates. Appl. Eng. Agri. 16(5):505-508. https://doi.org/10.13031/2013.5301

Cited by

  1. Effect of Slurry Composting Bio-filtration (SCB) by Subsurface Drip Fertigation on Cucumber (Cucumis sativus L.) Yield and Soil Nitrogen Distribution in Greenhouse vol.46, pp.4, 2013, https://doi.org/10.7745/KJSSF.2013.46.4.253
  2. Estimation of the Optimum Installation Depth of Soil Moisture Sensor in an Automatic Subsurface Drip Irrigation System for Greenhouse Cucumber vol.46, pp.2, 2013, https://doi.org/10.7745/KJSSF.2013.46.2.099
  3. Effect of Soil Textures on Fruit Yield, Nitrogen and Water Use Efficiencies of Cucumber Plant as Affected by Subsurface Drip Fertigation in the Greenhouse vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.372