DOI QR코드

DOI QR Code

Effects of Cover Plants on Soil Microbial Community in Organic Apple Orchards

피복작물이 유기 사과과원 토양미생물상에 미치는 영향

  • Oh, Young-Ju (Korea Biodiversity Reserarch Center Co., Ltd.) ;
  • Kang, Seok-Boem (Citrus Research Station, National Institute of Horticultural & Herbal Science) ;
  • Song, Yang-Ik (Apple Research Station, National Institute of Horticultural & Herbal Science) ;
  • Choi, Jin-Ho (Pear Research Station, National Institute of Horticultural & Herbal Science) ;
  • Paik, Woen-Ki (Department of Life Science, Deajin University)
  • 오영주 (한반도생물다양성연구소) ;
  • 강석범 (국립원예특작과학원 감귤시험장) ;
  • 송양익 (국립원예특작과학원 사과시험장) ;
  • 최진호 (국립원예특작과학원 배시험장) ;
  • 백원기 (대진대학교 생명과학과)
  • Received : 2012.09.25
  • Accepted : 2012.10.02
  • Published : 2012.10.30

Abstract

Organic fruit production has increased due to consumer's interest and government's political support for environmentally-friendly agriculture. The aim of this study was to investigate the effects of cover plants on soil microbial community and establish the fruit cultivation method by organic farming techniques. Cover plants used as an organic nutrient source in an apple orchard were rye and barley, the Gramineae and red clover and hairy vetch, the Leguminosae. In the effects of cover plants on the soil chemical characteristics, the soil pH values were higher than that of conventional organic pear orchard. The content of P showed no significant difference between control and cover plant plots. Organic matter level was similar in control and Gramineae cover plant plots, while organic matter content in cover plants belong to Leguminosae was lower than that of control plot. K content was lower in the plots treated with rye and red clover than control plot, while K content in hairy vetch treated plot was higher than control plot. Ca content was lower in control plot than in cover plant treated plots. Concentrations of Mg in the plots treated with barley and hairy vetch was lower than control plot. In August rye and red clover covered soil showed higher bacterial community density than that of control soil and barley treated soil showed highest Actinomycetes community density among treatments. Barley and hairy vetch soils showed higher level of fungi community density than that of control soil in August. In pyrosequencing analysis barley treated soil showed highest distribution ratio of Actinomycetes among treatment. Our findings might be used as basic data for choosing cover plant with effective organic matter decomposition and nutrition supply capacity.

최근에 소비자들의 안전 농산물에 대한 관심과 정부의 정책적인 친환경농업에 대한 지원으로 유기 과수 재배는 지속적으로 발전되어 왔다. 본 연구는 피복 작물별 유기 사과과원의 토양 화학성 및 시기별 토양미생물에 대한 비교분석을 통해 피복작물의 토양미생물상 영향을 구명하고 유기농법에 의한 과수재배법을 확립하고자 수행되었다. 피복작물은 벼과 작물인 호밀, 청보리와 콩과 작물인 레드클로버와 헤어리베치를 대상으로 하였다. 사과과원에서 피복처리에 의한 토양화학성분 변화는 자연초생구에 비하여 큰 차이를 보이지 않았으며 피복작물 처리간에도 유의성 있는 차이를 나타내지 않았다. 토양 pH는 7.8~8.1 범위로서 유기 배 과원 관행과원의 pH에 비해 상당히 높은 것으로 조사되었다. 유효인산은 자연초생시험구와 피복작물 시험구간 유의성있는 차이는 없었다. 유기물 함량은 자연초생구와 벼과 피복작물간에 유의성 있는 차이는 없었으나, 콩과 피복작물과 비교했을 때 자연초생구에 비해 콩과 피복작물의 유기물 함량이 적은 것으로 조사되었다. 치환성 양이온인 칼륨함량에서 호밀과 레드클로버 시험구는 자연초생구에 비해 다소 낮은 것으로 조사되었고, 헤어리베치의 경우 자연초생구에 비해 높은 것으로 조사되었다. 칼슘 함량은 자연초생구에 비해 피복작물들에서 다소 낮은 것으로 나타났으며, 마그네슘 함량은 청보리와 헤어리베치에서 자연초생구에 비해 낮은 것으로 조사되었다. 토양미생물 군집밀도 조사결과 8월 토양에서 자연초생구에 비해 호밀과 레드클로버 시험구의 세균 군집밀도가 다소 높은 것으로 분석되었으며 방선균 군집밀도는 자연초생구와 비교해서 청보리가 약간 높은 것으로 나타났다. 진균 군집밀도도 8월 토양에서 자연초생구에 비해 헤어리베치 시험구의 군집밀도가 약간 높은 것으로 조사되었다. Pyrosequencing을 통해 처리구별 배양균 및 비 배양균의 군집조성을 비교한 결과 청보리로 피복한 사과과원 토양의 방선균 분포비율이 다른 토양에 비해 2배 이상 높은 것으로 조사되었다. 본 연구는 피복작물에 따른 토양미생물상 영향을 조사한 것으로서 사과과원의 효과적인 유기물 분해와 양분공급을 위한 피복작물 선정의 기초자료로서 활용될 수 있을 것이다.

Keywords

References

  1. Cardina, J. 1995. Biological weed management. In: Smith, A.E. (Ed.), Handbook of Weed Management Systems. pp. 279-341. Marcel Dekker, New York, USA.
  2. Celette, F., A. Findeling, and C. Gary. 2009. Competetion for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. Eur. J. Agron. 30: 41-51. https://doi.org/10.1016/j.eja.2008.07.003
  3. Choi, H.S., L. Xiong, W.S. Kim, Y. Lee, and H.J. Jee. 2011. Comparison of soil physic-chemical and microbial characteristics in soil of 'Niitaka' pear orchards between organic and conventional cultivations. Korean J. Organic, Agric. 19(2): 229-243.
  4. Choi, K.H., D.H. Lee, Y.Y. Song, J.C. Nam, and S.W. Lee. 2010. Current status on the occurrence and management of disease, insect and mite pests in the non-chemical or organic cultured apple orchards in Korea. Kor. J. Organic Agric. 18: 221-232.
  5. Duxbury, J.M., M.S. Smith, and J.W. Doran. 1989. Soil organic matter as source and a sink of plant nutrients, In: Colenman, D. C. et al. (eds.). Dynamics of soil organic matter in tropical ecosystems, pp. 33-68. Univ. Hawaii Press, Honolulu, USA.
  6. Embley, T.M. and E. Stackebrandt. 1994. The molecular phylogeny and systemativs of actinomycetes. Annu. Rev. Microbiol. 48: 257-289 https://doi.org/10.1146/annurev.mi.48.100194.001353
  7. Evans, J.R. and I. Terashima. 1987. Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach, Aust. J. Plant Physiol. 14: 281-292.
  8. Fisk, J.W. and O.B. Hesterman. 2001. Weed suppression by annual legume cover crops in no-tillage corn. Agron. J. 93: 263-298. https://doi.org/10.2134/agronj2001.932263x
  9. Granatstein, D. 2002. North American trends for organic tree fruit production. Compact Fruit Tree. 35: 83-87.
  10. Heuer, H., M. Krsek, P. Baker, K. Smalla, and E.M.H. Wellington. 1997a. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241
  11. Kennedy, A.C. 1999. Bacterial diversity in agroecosystems. Agric. Ecosyst. Environ. 74: 65-76h https://doi.org/10.1016/S0167-8809(99)00030-4
  12. Kuo, S. and U.M. Sainju. 1997. Winter cover crop effects on soil organic carbon and carbohydrate in soil. Soil Sci. 61: 145-152. https://doi.org/10.2136/sssaj1997.03615995006100010022x
  13. McGill, W.B., K.R. Cannon, J.A. Roberson, and F.D. Cook. 1986. Dynamics of soil microbial biomass and water-soluble organic carbon in Breton L after 50 years of cropping to two rotations. Can. J. Soil. Sci. 66: 1-19 https://doi.org/10.4141/cjss86-001
  14. NIAST. 2010. Methods of Soil Chemical Analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  15. Peck, G.M., P.K. Andrews, C. Rhichter, and J.P. Reganold. 2005. Internationalization of the organic fruit market: The case of Washington State's organic apple exports to the European Union. Rennewable Agr. Food Sys. 20: 101-112 https://doi.org/10.1079/RAF2004102
  16. Petersen, J. and A. Rover. 2005. Comparison of sugar beet cropping systems with dead and living mulch using a glyphosate-resistant hybrid. J. Agron. Crop Sci. 191: 55-63. https://doi.org/10.1111/j.1439-037X.2004.00134.x
  17. Ramos, M.E., E. Benitez, P.A. Garcia, and A.B. Robles. 2010. Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: Effects on soil quality. Appl. Soil Ecol. 44: 6-14. https://doi.org/10.1016/j.apsoil.2009.08.005
  18. Sakamoto, K. and Y. Oba. 1993. Relationship between available N and soil biomass in upland field soils. Jpn. J. Soil Sci. Plant Nutr. 64: 42-48.
  19. Suh, J.S., J.S. Kwon, and H.J. Noh. 2010. Effect of the long-term application of organic matters on microbial diversity in upland soils. Korean J. Soil. Fert. 43: 987-994.
  20. Wyland L.J., L.E. Jackson, W.E. Chaney, K. Klonsky, S.T. Koike, and B. Kimple. 1996. Winter cover crops in a vegetable cropping system: Impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agric. Ecosyst. Environ. 59: 1-17 https://doi.org/10.1016/0167-8809(96)01048-1
  21. Young, G. 2002. A fieldman's perspective on frowing and packing organic fruit. Compact Fruit Tree 35: 90-91.
  22. Van Diepeningen, A.D., O.J. de Vos, G.W. Korthals, and A.H.C. van Bruggen. 2006. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Appl. Soil Ecol. 31: 120-135. https://doi.org/10.1016/j.apsoil.2005.03.003

Cited by

  1. Impacts of Soil Texture on Microbial Community of Orchard Soils in Gyeongnam Province vol.48, pp.2, 2015, https://doi.org/10.7745/KJSSF.2015.48.2.081
  2. Inhibition Effect on Root Rot Disease of Panax ginseng by Crop Cultivation in Soil Occurring Replant Failure vol.23, pp.3, 2015, https://doi.org/10.7783/KJMCS.2015.23.3.223
  3. Design Strategies for Ecological Restoration Using System Dynamics - Focused on 2015 Miryang-si Jayeon Madang Development Project - vol.43, pp.6, 2015, https://doi.org/10.9715/KILA.2015.43.6.086
  4. Crop Rotation in Paddy Soil Exhibiting Crop Failure Following Replanting: Effect on Soil Chemical Properties, Soil Microbial Community and Growth Characteristics of 2-Year-Old Ginseng vol.24, pp.4, 2016, https://doi.org/10.7783/KJMCS.2016.24.4.294
  5. Selection of Native Ground Cover Plants for Sod Culture in an Organic Apple Orchard vol.28, pp.5, 2015, https://doi.org/10.7732/kjpr.2015.28.5.641