DOI QR코드

DOI QR Code

Fly Ash Application Effects on CH4 and CO2 Emission in an Incubation Experiment with a Paddy Soil

항온 배양 논토양 조건에서 비산재 처리에 따른 CH4와 CO2 방출 특성

  • Lim, Sang-Sun (Department of Rural & Biosystems Engineering, Chonnam National University) ;
  • Choi, Woo-Jung (Department of Rural & Biosystems Engineering, Chonnam National University) ;
  • Kim, Han-Yong (Department of Applied Plant Science, Chonnam National University) ;
  • Jung, Jae-Woon (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Yoon, Kwang-Sik (Department of Rural & Biosystems Engineering, Chonnam National University)
  • 임상선 (전남대학교 지역.바이오시스템공학과) ;
  • 최우정 (전남대학교 지역.바이오시스템공학과) ;
  • 김한용 (전남대학교 식물생명공학부) ;
  • 정재운 (국립환경과학원 영산강물환경연구소) ;
  • 윤광식 (전남대학교 지역.바이오시스템공학과)
  • Received : 2012.08.16
  • Accepted : 2012.10.10
  • Published : 2012.10.30

Abstract

To estimate potential use of fly ash in reducing $CH_4$ and $CO_2$ emission from soil, $CH_4$ and $CO_2$ fluxes from a paddy soil mixed with fly ash at different rate (w/w; 0, 5, and 10%) in the presence and absence of fertilizer N ($(NH_4)_2SO_4$) addition were investigated in a laboratory incubation for 60 days under changing water regime from wetting to drying via transition. The mean $CH_4$ flux during the entire incubation period ranged from 0.59 to $1.68mg\;CH_4\;m^{-2}day^{-1}$ with a lower rate in the soil treated with N fertilizer due to suppression of $CH_4$ production by $SO_4^{2-}$ that acts as an electron acceptor, leading to decreases in electron availability for methanogen. Fly ash application reduced $CH_4$ flux by 37.5 and 33.0% in soils without and with N addition, respectively, probably due to retardation of $CH_4$ diffusion through soil pores by addition of fine-textured fly ash. In addition, as fly ash has a potential for $CO_2$ removal via carbonation (formation of carbonate precipitates) that decreases $CO_2$ availability that is a substrate for $CO_2$ reduction reaction (one of $CH_4$ generation pathways) is likely to be another mechanisms of $CH_4$ flux reduction by fly ash. Meanwhile, the mean $CO_2$ flux during the entire incubation period was between 0.64 and $0.90g\;CO_2\;m^{-2}day^{-1}$, and that of N treated soil was lower than that without N addition. Because N addition is likely to increase soil respiration, it is not straightforward to explain the results. However, it may be possible that our experiment did not account for the substantial amount of $CO_2$ produced by heterotrophs that were activated by N addition in earlier period than the measurement was initiated. Fly ash application also lowered $CO_2$ flux by up to 20% in the soil mixed with fly ash at 10% through $CO_2$ removal by the carbonation. At the whole picture, fly ash application at 10% decreased global warming potential of emitted $CH_4$ and $CO_2$ by about 20%. Therefore, our results suggest that fly ash application can be a soil management practice to reduce green house gas emission from paddy soils. Further studies under field conditions with rice cultivation are necessary to verify our findings.

비산재 혼합에 의한 $CH_4$$CO_2$ 방출 저감 가능성을 조사하기 위해 질소 ($(NH_4)_2SO_4$) 무처리구와 처리구를 두고 비산재를 0, 5, 10% 수준으로 혼합한 후 토양 수분 변동조건 (습윤기간, 전이기간, 건조기간)에서 60일간 실험실내 항온배양실험을 통해 $CH_4$$CO_2$ flux를 분석하였다. 전체 항온배양기간 중 평균 $CH_4$ flux는 $0.59{\sim}1.68mg\;CH_4\;m^{-2}day^{-1}$의 범위였으며, 질소 무처리구에 비해 처리구에서 flux가 낮았는데, 이는 질소 처리시 함께 시용된 $SO_4^{2-}$의 전자수용체 기능에 의해 $CH_4$ 생성이 억제되었기 때문으로 판단되었다. 질소 무처리구와 처리구에서 비산재 10% 처리에 의해 $CH_4$ flux가 각각 37.5%와 33.0% 감소하였는데, 이는 물리적인 측면에서 미립질 (실트 함량 75.4%)인 비산재 시용에 의해 통기성 대공극량이 감소되어 $CH_4$ 확산 속도가 저감되었기 때문으로 판단되었다. 또한, 생화학적 측면에서는 비산재의 $CO_2$ 흡착능에 의해 $CH_4$ 생성의 주요 기작 중 하나인 이산화탄소 환원에 필요한 $CO_2$ 공급이 억제된 것도 원인 일 수 있다. 한편, 전체 항온 배양 기간의 평균 $CO_2$ flux ($0.64{\sim}0.90g\;CO_2\;m^{-2}day^{-1}$) 역시 질소 무처리구가 질소 처리구보다 높았다. 이는 일반적으로 질소 시비에 의해 토양 호흡량이 증가한다는 기존의 연구결과와는 상이한데, 본 연구에서 질소 처리에 의해 활성화된 미생물에 의해 $CO_2$ flux 최초 측정 시점 (처리 후 2일째) 이전에 이미 상당한 양의 $CO_2$가 이미 방출되어 실측 flux에 반영되지 못했기 때문으로 설명이 가능했다. $CH_4$과 유사하게 $CO_2$ flux도 비산재무처리구에 비해 비산재 10% 처리구에서 약 20% 감소하였는데, 이는 비산재의 원소 구성 중 Ca과 Mg과 토양수내 탄산이온의 탄산염 ($CaCO_3$$MgCO_3$)화 반응에 의한 $CO_2$ 침전 때문이다. 이상과 같은 비산재 처리에 의한 $CH_4$$CO_2$ flux 감소에 의해 지구온난화지수 역시 비산재 10% 처리구에서 약 20% 감소하였다. 따라서, 비산재는 논 토양에서 $CH_4$$CO_2$ 방출 저감에 효과가 있는 것으로 나타났으며, 실재 벼 재배 포장에서의 실험을 통한 추가적인 검증이 필요하다.

Keywords

References

  1. Bedard, C. and R. Knowles. 1989. Physiology, biochemistry, and specific inhibitors of $CH_{4}$, $NH_{4}^{+}$, and CO oxidation by methanotrophs and nitrifiers. Microbiol. Mol. Biol. Rev. 53:68-84.
  2. Chang, A.C., L.J. lund, A.L. Page, and J.E. Warneke. 1977. Physical properties of fly ash amended soils. J. Environ. Qual. 6(3):267-270.
  3. Chen, R., X. Lin, Y. Wang, and J. Hu. 2011. Mitigating methane emissions from irrigated paddy fields by application of aerobically composted livestock manures in eastern China. Soil Use Manage. 27:103-109. https://doi.org/10.1111/j.1475-2743.2010.00316.x
  4. Dalal, R.C., D.E. Allen, S.J. Livesley, and G. Richards. 2008. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review. Plant Soil 309:43-76. https://doi.org/10.1007/s11104-007-9446-7
  5. Denmead, O.T. 1995. Novel meterological methods for measuring trace gas fluxes. Phil. Trans. R. Soc. Lond. A 351:383-396. https://doi.org/10.1098/rsta.1995.0041
  6. Dunfield, P., R. Knowles, R. Dumpont, and T.R. Moore. 1993. Methane production and consumption in temperate and subarctic peat soils - response to temperature and pH. Soil Biol. Biochem. 25:321-326. https://doi.org/10.1016/0038-0717(93)90130-4
  7. Ellert, B.H. and H.H. Janzen. 2008. Nitrous oxide, carbon dioxide and methane emission from irrigated cropping systems as influenced by legumes, manure and fertilizer. Can. J. Soil Sci. 88:207-217. https://doi.org/10.4141/CJSS06036
  8. Gee, G.W. and J.W. Bauder. 1986. Particle size analysis. p. 383-412. In Campbell, G.S. et al. (ed.) Methods of soil analysis, Part 1, Physical and mineralogical methods. Soil Sci. Soc. of Am., Madison, Wi, USA.
  9. Halvorson, A.D., B.J. Wienhold, and A.L. Black. 2002. Tillage, nitrogen, and cropping system effects on soil carbon sequestration. Soil Sci. Soc. Am. J. 66:906-912. https://doi.org/10.2136/sssaj2002.0906
  10. Husch, B.W. 1998. Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH. Biol. Fertil. Soils 28:27-35. https://doi.org/10.1007/s003740050459
  11. Houghton, R.A. 2007. Balancing the global carbon budget. Annu. Rev. Earth Pl. Sc. 35:313-347. https://doi.org/10.1146/annurev.earth.35.031306.140057
  12. Inobushi, K., Y. Furukawa, N. Shibasaki, M. Ali., A.M. Itang, and H. Tsurta. 2005. Factors influencing methane emission from peat soils, comparison of tropical and temperate wetlands. Nutrient Cycl. Agroecosys. 71:93-99. https://doi.org/10.1007/s10705-004-5283-8
  13. Intergovernmental Panel on Climate Change (IPCC). 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press, New York.
  14. Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: Mitigation. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climatic change. Cambridge University Press, New York.
  15. Jala, S. and D. Goyal. 2006. Fly ash as a soil ameliorant for improving crop production-a review. Bioresour. Technol. 97:1136-1147. https://doi.org/10.1016/j.biortech.2004.09.004
  16. Jastrow, J.D., E.J. Amonette, and V.L. Bailey. 2007. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change 80:5-23. https://doi.org/10.1007/s10584-006-9178-3
  17. Klubek, B., C.L. Carson, J. Oliver, and D.C. Adriano. 1992. Characterization of microbial abundance and activity from three coal fly ash basin. Soil Biol. Biochem. 24:1119-1125. https://doi.org/10.1016/0038-0717(92)90062-3
  18. Lee, H., S.H. Ha, C.H. Lee, Y.B. Lee, and P.J. Kim. 2006. Fly ash effect on improving soil properties and rice productivity in Korean paddy soils. Bioresour. Technol. 97:1490-1497. https://doi.org/10.1016/j.biortech.2005.06.020
  19. Lee, S.B., Y.B. Lee, C.H. Lee, C.O. Hong, P.J. Kim, and C. Yu. 2008. Characteristics of boron accumulation by fly ash application in paddy soil. Bioresour. Technol. 99:5928-5932. https://doi.org/10.1016/j.biortech.2007.11.022
  20. Lee, S.I., S.S. Lim, K.S. Lee, D.S. Lee, J.H. Kwak, X. Hao, H.M. Ro, and W.J. Choi. 2011. Kinetic responses of soil carbon dioxide emission to increasing urea application rate. Korean J. Envrion, Agric. 30:209-215. https://doi.org/10.5338/KJEA.2011.30.2.209
  21. Lim, S.S., W.J. Choi, and H.Y. Kim. 2012a. Fertilizer and organic inputs effects on $CO_{2}$ and $CH_{4}$ emission from a soil under changing water regimes. Korean J. Environ. Agric. 31(2):104-112. https://doi.org/10.5338/KJEA.2012.31.2.104
  22. Lim, S.S., W.J. Choi, K.S. Lee, and H.R. Ro. 2012b. Reduction in $CO_{2}$ emission from normal and saline soils amended with coal fly ash. J. Soils Sediment 12:1299-1308. https://doi.org/10.1007/s11368-012-0545-6
  23. Mandal, B., B. Majumder, P.K. Bandyopadhay, G.C. Hazra, A. Gangopadhyay, R.N. Samantaray, A.K. Mishra, J. Chaudhury, M.N. Saha, and S. Kundu. 2007. The potential of cropping systems and soil amendments for carbon sequestration in soils under long-term experiments in subtropical India. Global Change Biol. 13:357-369. https://doi.org/10.1111/j.1365-2486.2006.01309.x
  24. Maroto-Valer, M.M., Z. Lu, Y. Zhang, and Z. Tang. 2008. Sorbents for $CO_{2}$ capture from high carbon fly ashes. Waste Manage. 28:2320-2328. https://doi.org/10.1016/j.wasman.2007.10.012
  25. McCarty, G.W., R. Siddaramappa, R.J. Wright, E.E. Codling, and G. Gao. 1994. Sorbents for $CO_{2}$ capture from high carbon fly ashes. Waste Manage 28:2320-228.
  26. Meijide, A., L.M. Cardenas, L. Sanchez-Martin, and A. Vallejo. 2010. Caron dioxide and methane fluxes from a barely field amended with organic fertilizers under Mediterranean climatic conditions. Plant Soil 328:353-367. https://doi.org/10.1007/s11104-009-0114-y
  27. Mer, J.L. and P. Roger. 2001. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 37:25-50. https://doi.org/10.1016/S1164-5563(01)01067-6
  28. Montes-Hernandez, G., R. Prez-Lopez, F. Renard, J.M. Nieto, and L. Charelt. 2009. Mineral sequestration of $CO_{2}$ by aqueous carbonation of coal combustion fly-ash. J. Hazard. Mater. 161:1347-1354. https://doi.org/10.1016/j.jhazmat.2008.04.104
  29. Nable, R.O, G.S. Banuelos, and J.G. Paull. 1997. Boron toxicity. Plant Soil 193:181-198. https://doi.org/10.1023/A:1004272227886
  30. Nouchi, I. and S. Yonemura. 2005. $CO_{2}$, $CH_{4}$ and $N_{2}O$ fluxes from soybean and barely double-cropping in relation to tillage in Japan. Phyton-ann. Rei. Bot. A. 45:327-338.
  31. Nyberg, G., A. Ekblad, R. Buresh, and P. Hogberg. 2002. Short-term patterns of carbon and nitrogen mineralization in a fallow field amended with green manures from agroforesty trees. Biol. Fert. Soils 36:18-25. https://doi.org/10.1007/s00374-002-0484-2
  32. Pandey, V.C. and N. Singh. 2010. Impact of fly ash incorporation in soil systems. Agr. Ecosyst. Environ. 136:16-27. https://doi.org/10.1016/j.agee.2009.11.013
  33. Sumner, M.E. and W.P. Miller. 1996. Cation exchange capacity and exchange coefficient. p. 1201-1229. In Sparks, et al. (ed.) Methods of soil analysis, Part3, Chemical methods. Soil Sci. Soc. of Am., Madison, Wi, USA.
  34. Wang, Z.P., C.W. Lindau, R.D. Delaune, and W.H. Patrick. 1993. Soil redox and pH effects on methane production in a flooded rice soil. Soil Science Soc. Am. J. 57:382-385. https://doi.org/10.2136/sssaj1993.03615995005700020016x
  35. Wong, M.H. and J.W.C. Wong. 1986. Effects of fly ash on soil microbial activity. Environ. Pollut. Ser. A. 40:127-144. https://doi.org/10.1016/0143-1471(86)90080-2
  36. Yun, S.I., B.M. Kang, S.S. Lim, W.J. Choi, J. Ko, J. Yoon, H.M. Ro, and H.Y. Kim. 2012. Further understanding [$CH_{4}$ emission from a flooded rice field exposed to experimental with elevated [$CO_{2}$]. Agric. For. Meteorol. 154-155:75-83. https://doi.org/10.1016/j.agrformet.2011.10.011

Cited by

  1. Effect of By-Product Gypsum Fertilizer on Methane Gas Emissions and Rice Productivity in Paddy Field vol.49, pp.1, 2016, https://doi.org/10.7745/KJSSF.2016.49.1.030