DOI QR코드

DOI QR Code

Development of Carbon Composite Bipolar Plates for Vanadium Redox Flow Batteries

  • Lee, Nam Jin (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Lee, Seung-Wook (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Kim, Ki Jae (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Kim, Jae-Hun (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Park, Min-Sik (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Jeong, Goojin (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Kim, Young-Jun (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Byun, Dongjin (Department of Materials Science and Engineering, Korea University)
  • Received : 2012.05.01
  • Accepted : 2012.08.01
  • Published : 2012.11.20

Abstract

Carbon composite bipolar plates with various carbon black contents were prepared by a compression molding method. The electrical conductivity and electrochemical stability of the bipolar plates have been evaluated. It is found that the electrical conductivity increases with increasing carbon black contents up to 15 wt %. When the carbon black contents are greater than 15 wt %, the electrical conductivity decreases because of a poor compatibility between epoxy resin and carbon black, and a weakening of compaction in the carbon composite bipolar plate. Based on the results, it could be concluded that there are optimum carbon black contents when preparing the carbon composite bipolar plate. Corrosion tests show that the carbon composite bipolar plate with 15 wt % carbon black exhibits better electrochemical stability than a graphite bipolar plate under a highly acidic condition. When the optimized carbon composite bipolar plate is applied to vanadium redox flow cells, the performance of flow cells with the carbon composite bipolar plate is comparable to that of flow cells with the graphite bipolar plate.

Keywords

References

  1. Ponce de Leon, C.; Frias-Ferrer, A.; Gonzalez-Garcia, J.; Szanto, D. A.; Walsh, F. C. J. Power Sources 2006, 160, 716. https://doi.org/10.1016/j.jpowsour.2006.02.095
  2. Thaller, L. H. US patent 3,996,064, 1975.
  3. Pletcher, D.; Wills, R. Phys. Chem. Chem. Phys. 2004, 6, 1779. https://doi.org/10.1039/b401116c
  4. Singh, P.; Jonshagen, B. J. Power Sources 1991, 35, 405. https://doi.org/10.1016/0378-7753(91)80059-7
  5. Singh, P.; White, K.; Parker, A. J. J. Power Sources 1983, 10, 309. https://doi.org/10.1016/0378-7753(83)80013-5
  6. Sum, E.; Skyllas-Kazacos, M. J. Power Sources 1985, 15, 179. https://doi.org/10.1016/0378-7753(85)80071-9
  7. Sum, E.; Rychcik, M.; Skyllas-Kazacos, M. J. Power Sources 1985, 16, 85. https://doi.org/10.1016/0378-7753(85)80082-3
  8. Chen, W.; Liu, Y.; Xin, Q. Int. J. Hydrogen Energy 2010, 35, 3783. https://doi.org/10.1016/j.ijhydene.2010.02.004
  9. Dihrab, S. S.; Sopian, K.; Alghoul, M. A.; Sulaiman, M. Y. Renew. Sust. Energy Rev. 2009, 13, 1663. https://doi.org/10.1016/j.rser.2008.09.029
  10. Yen, C. Y.; Liao, S. H.; Lin, Y. F.; Hung, C. H.; Lin, Y. Y.; Ma, C. C. M. J. Power Sources 2006, 162, 309. https://doi.org/10.1016/j.jpowsour.2006.06.076
  11. Liao, S. H.; Hung, C. H.; Ma, C. C. M.; Yen, C. Y.; Lin, Y. F.; Weng, C. C. J. Power Sources 2008, 176, 175. https://doi.org/10.1016/j.jpowsour.2007.10.064
  12. Smits, F. M. Bell System Technical Journal 1958, 37, 711. https://doi.org/10.1002/j.1538-7305.1958.tb03883.x
  13. Jones, D. A. Principles and Prevention of Corrosion, 2nd ed., Prentice Hall: Upper Saddle River, NJ, 1996.

Cited by

  1. Poly(vinylbenzyl chloride-glycidyl methacrylate)/Polyethylene Composite Anion Exchange Membranes for Vanadium Redox Battery Application vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1651
  2. Vanadium redox flow batteries: a technology review vol.39, pp.7, 2014, https://doi.org/10.1002/er.3260
  3. Supporting Material for Highly Reversible Zinc-Bromine Electrolytes vol.37, pp.3, 2016, https://doi.org/10.1002/bkcs.10669
  4. Bulk Aging of Graphite-Polypropylene Current Collectors Induced by Electrochemical Cycling in the Positive Electrolyte of Vanadium Redox Flow Batteries vol.164, pp.12, 2017, https://doi.org/10.1149/2.1261712jes
  5. Development of Integrally Molded Bipolar Plates for All-Vanadium Redox Flow Batteries vol.9, pp.5, 2016, https://doi.org/10.3390/en9050350
  6. Chemical Stability of Graphite-Polypropylene Bipolar Plates for the Vanadium Redox Flow Battery at Resting State vol.163, pp.10, 2016, https://doi.org/10.1149/2.0841610jes
  7. The Correlation Between Charge and Discharge Current for the Electrochemical Stability and Durability of Electrolyte in a Vanadium Redox Flow Battery vol.39, pp.9, 2018, https://doi.org/10.1002/bkcs.11546
  8. Corrosion of Graphite-Polypropylene Current Collectors during Overcharging in Negative and Positive Vanadium Redox Flow Battery Half-Cell Electrolytes vol.165, pp.5, 2018, https://doi.org/10.1149/2.0921805jes
  9. Design, Development, and Testing of a Low-Concentration Vanadium Redox Flow Battery vol.18, pp.1, 2012, https://doi.org/10.1115/1.4046869
  10. Review-Bipolar Plates for the Vanadium Redox Flow Battery vol.168, pp.6, 2012, https://doi.org/10.1149/1945-7111/ac0177
  11. Flexible graphite bipolar plates for vanadium redox flow batteries vol.45, pp.7, 2012, https://doi.org/10.1002/er.6592
  12. Review of Bipolar Plate in Redox Flow Batteries: Materials, Structures, and Manufacturing vol.4, pp.4, 2021, https://doi.org/10.1007/s41918-021-00108-4