DOI QR코드

DOI QR Code

Ag2Se-Graphene/TiO2 Nanocomposites, Sonochemical Synthesis and Enhanced Photocatalytic Properties Under Visible Light

  • Meng, Ze-Da (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Ghosh, Trisha (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Park, Chong-Yeon (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Ullah, Kefayat (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Nikam, Vikram (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2012.06.26
  • Accepted : 2012.08.24
  • Published : 2012.11.20

Abstract

$Ag_2Se$-Graphene/$TiO_2$ composite was synthesized by a facile sonochemical method. The as-prepared products were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectrophotometer. During the reaction, both of the reduction of graphene oxide and loading of $Ag_2Se$ and $TiO_2$ particles were achieved. The as-prepared $Ag_2Se$-Graphene/$TiO_2$ composites possessed great adsorptivity of dyes, extended light absorption range, and efficient charge separation properties simultaneously. Hence, in the photodegradation of rhodamine B (Rh.B), a significant enhancement in the reaction rate was observed with $Ag_2Se$-Graphene/$TiO_2$ composites, compared to the pure $TiO_2$. The high activity can be attributed to the synergetic effects of high charge mobility, and red shift in absorption edge of $Ag_2Se$-Graphene/$TiO_2$ composites.

Keywords

References

  1. Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. https://doi.org/10.1038/nmat1849
  2. Kamat, P. V. J. Phys. Chem. Lett. 2010, 1, 520. https://doi.org/10.1021/jz900265j
  3. Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. ACS Nano 2010, 4, 380. https://doi.org/10.1021/nn901221k
  4. Kim,S. R.; Parvez, M. K.; Chhowalla, M. Chem. Phys. Lett. 2009, 483, 124. https://doi.org/10.1016/j.cplett.2009.10.066
  5. Saleh, T. A.; Gondal, M. A.; Drmosh, Q. A. Nanotechnology 2010, 21, 495705. https://doi.org/10.1088/0957-4484/21/49/495705
  6. Wang, S.; Shi, X. L.; Shao, G. Q.; Duan, X. L.; Yang, H.; Wang, T. G. J. Phys. Chem. Solids 2008, 69, 396.
  7. Oh, W. C.; Jung, A. R.; Ko, W. B. Mater. Sci. Eng. C 2009, 29, 1338. https://doi.org/10.1016/j.msec.2008.10.034
  8. Oh, W. C., Zhang, F. J.; Chen, M. L. J. Ing. Eng. Chem. 2010, 16, 299. https://doi.org/10.1016/j.jiec.2009.09.065
  9. Zhu, L.; Meng, Z. D.; Oh, W. C. Chin. J. Catal. 2011, 32, 926. https://doi.org/10.1016/S1872-2067(10)60208-2
  10. Woan, K.; Pyrgiotakis, G.; Sigmund, W. Adv. Mater. 2009, 21, 2233. https://doi.org/10.1002/adma.200802738
  11. Chen, C.; Cai, W. M.; Long, M. C.; Zhou, B. X.; Wu, Y. H.; Wu, D. Y.; Feng, Y. J. ACS Nano 2010, 4, 6425 https://doi.org/10.1021/nn102130m
  12. Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. ACS Nano 2010, 4, 380. https://doi.org/10.1021/nn901221k
  13. Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. ACS Nano 2010, 4, 7303. https://doi.org/10.1021/nn1024219
  14. Liang, Y. Y.; Wang, H. L.; Casalongue, H. N. S. C.; Chen, Z.; Dai, H. J. Non Res. 2010, 3, 701. https://doi.org/10.1007/s12274-010-0033-5
  15. Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. https://doi.org/10.1021/ja01539a017
  16. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4, 4806. https://doi.org/10.1021/nn1006368
  17. Akhavan, O.; Abdolahad, M.; Esfandiar, A.; Mohatashamifar, M. J. Phys. Chem. C 2010, 114, 12955. https://doi.org/10.1021/jp103472c
  18. Vogel, R.; Pohl, K.; Weller, H. Chem. Phys. Lett. 1990, 174, 241. https://doi.org/10.1016/0009-2614(90)85339-E
  19. Suleymanov, A. S. Int. J. Hydrogen Energy 1991, 16, 741. https://doi.org/10.1016/0360-3199(91)90071-P
  20. Ennaoui, A.; Fiechter, S.; Tributsch, H.; Giersig, M.; Vogel, R.; Weller, H. J. Electrochem. Soc. 1992, 139, 2514. https://doi.org/10.1149/1.2221255
  21. Sheldrich, W. S.; Wachold, M. Int. Ed. Engl. 1997, 36, 206. https://doi.org/10.1002/anie.199702061
  22. Das, V. D.; Karunakaran, D. Phys. Rev. B 1989, 39, 10872. https://doi.org/10.1103/PhysRevB.39.10872
  23. Zhao, J. J.; Jiang, B. T.; Zhang, S. Y.; Niu, H. L.; Jin, B. K.; Tian, Y. P. Sci. China, Ser. B 2009, 52, 2213. https://doi.org/10.1007/s11426-009-0143-7
  24. Cao, H. Q.; Xiao, Y. J.; Lu, Y. X.; Yin, J. F.; Li, B. J.; Wu, S. S.; Wu, X. M. Nano Res. 2010, 3, 863 https://doi.org/10.1007/s12274-010-0057-x
  25. Neppolian, B.; Bruno, A.; Bianchi, C. L.; Ashokkumar, M. Ultrason Sonochem. 2012, 19, 9. https://doi.org/10.1016/j.ultsonch.2011.05.018
  26. Oh, W. C.; Chen, M. L.; Zhang, K.; Zhang, F. J.; Jang, W. K. J. Korean Phys. Soc. 2010, 56, 1097. https://doi.org/10.3938/jkps.56.1097
  27. Zhan, J. H.; Yang, X. G.; Li, S. D.; Wang, D. W.; Xie, Y.; Qian, Y. T. Int. J. Mater. 2001, 3, 47.
  28. Zhang, X. Y.; Li, H. P.; Cui, X. L.; Lin, Y. H. J. Mater. Chem. 2010, 20, 2801. https://doi.org/10.1039/b917240h
  29. Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. ACS Nano 2010, 4, 380. https://doi.org/10.1021/nn901221k
  30. Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabo, T.; Szeri, A.; Dekany, I. Langmuir 2003, 19, 6050. https://doi.org/10.1021/la026525h
  31. Qourzal, S.; Barka, N.; Tamimi, M.; Assabbane, A.; Nounah, A.; Ihlal, A.; Ait-Ichou, Y. Mater. Sci. Eng. C 2009, 29, 1616. https://doi.org/10.1016/j.msec.2008.12.024
  32. Yang, N. L.; Zhai, J.; Wang, D.; Chen, Y. S.; Jiang, L. ACS Nano 2010, 4, 887. https://doi.org/10.1021/nn901660v
  33. Li, Y.; Li, X.; Li, J.; Yin, J. Water Res. 2006, 40, 1119. https://doi.org/10.1016/j.watres.2005.12.042
  34. Williams, G.; Seger, B.; Kamat, P. V. ACS Nano 2008, 2, 1487. https://doi.org/10.1021/nn800251f
  35. Lightcap, I. V.; Kosel, T. H.; Kamat, P. V. Nano Lett. 2010, 10, 577. https://doi.org/10.1021/nl9035109

Cited by

  1. Synthesis and characterization of novel PtSe2/graphene nanocomposites and its visible light driven catalytic properties vol.49, pp.12, 2014, https://doi.org/10.1007/s10853-014-8109-3
  2. Catalysts and Its Application in the Photodegradation of Reactive Black B vol.23, pp.7, 2015, https://doi.org/10.1080/1536383X.2014.915809
  3. for Enhanced Photocatalytic Activity vol.11, pp.11, 2016, https://doi.org/10.1002/asia.201600157
  4. Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts vol.18, pp.7, 2016, https://doi.org/10.1039/C5CP08041J
  5. A facile and fast synthesis of novel composite Pt-graphene/TiO2 with enhanced photocatalytic activity under UV/Visible light vol.231, pp.None, 2013, https://doi.org/10.1016/j.cej.2013.07.014
  6. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review vol.4, pp.8, 2014, https://doi.org/10.1039/c3ra45013a
  7. Optical and photocatalytic properties of novel heterogeneous PtSe2-graphene/TiO2 nanocomposites synthesized via ultrasonic assisted techniques vol.21, pp.5, 2012, https://doi.org/10.1016/j.ultsonch.2014.04.016