DOI QR코드

DOI QR Code

The Effect of SiO2 Shell on the Suppression of Photocatalytic Activity of TiO2 and ZnO Nanoparticles

  • Lee, Min Hee (Automotive/Research & Develpment Division, Hyundai Mortor Group) ;
  • Patil, Umakant Mahadev (Department of Chemistry and Nano Science, Division of Molecular and Life Sciences, College of Natural Sciences, Ewha Womans University) ;
  • Kochuveedu, Saji Thomas (Department of Chemistry and Nano Science, Division of Molecular and Life Sciences, College of Natural Sciences, Ewha Womans University) ;
  • Lee, Choon Soo (Automotive/Research & Develpment Division, Hyundai Mortor Group) ;
  • Kim, Dong Ha (Department of Chemistry and Nano Science, Division of Molecular and Life Sciences, College of Natural Sciences, Ewha Womans University)
  • Received : 2012.08.04
  • Accepted : 2012.08.26
  • Published : 2012.11.20

Abstract

In this study, we investigate the potential use of $TiO_2@SiO_2$ and $ZnO@SiO_2$ core/shell nanoparticles (NPs) as effective UV shielding agent. In the typical synthesis, $SiO_2$ was coated over different types of $TiO_2$ (anatase and rutile) and ZnO by sol-gel method. The synthesized $TiO_2@SiO_2$ and $ZnO@SiO_2$ NPs were characterized by UV-Vis, XRD, SEM and TEM. The UV-vis absorbance and transmittance spectra of core@shell NPs showed an efficient blocking effect in the UV region and more than 90% transmittance in the visible region. XRD and SAED studies confirmed the formation of amorphous $SiO_2$ coated over the $TiO_2$ and ZnO NPs. The FESEM and TEM images shows that coating of $SiO_2$ over the surface of anatase, rutile $TiO_2$ and ZnO NPs resulted in the increase in particle size by ~30 nm. In order to study the UV light shielding capability of the samples, photocatalytic degradation of methylene blue dye on $TiO_2@SiO_2$ and $ZnO@SiO_2$ NPs was performed. Photocatalytic activity for both types of $TiO_2$ NPs was partially suppressed. In comparison, the photocatalytic activity of ZnO almost vanished after the $SiO_2$ coating.

Keywords

References

  1. Hoffmann, K.; Kaspar, K.; Gambichler, T.; Altmeyer, P. J. Am. Acad. Dermatol. 2000, 43, 1009. https://doi.org/10.1067/mjd.2000.107959
  2. Hatch, K. L. Recent Res. Cancer Res. 2002, 160, 42. https://doi.org/10.1007/978-3-642-59410-6_6
  3. Zhang, Y.; Yu, L.; Ke, S.; Shen, B.; Meng, X.; Huang, H.; Fengzhu, L.; Xin, J. H.; Chan, H. L. W. J. Sol-Gel Sci. Technol. 2011, 58, 326. https://doi.org/10.1007/s10971-010-2395-2
  4. Xin, J. H.; Daoud, W. A.; Kong, Y. Y. Tex. Res. J. 2004, 74, 97. https://doi.org/10.1177/004051750407400202
  5. Daoud, W. A.; Xin, J. H.; Zhang, Y. H. J. Non-Cryst. Solids 2005, 351, 1486. https://doi.org/10.1016/j.jnoncrysol.2005.03.036
  6. Daoud, W. A.; Xin, J. H.; Zhang, Y. H. Surf. Sci. 2005, 599, 69. https://doi.org/10.1016/j.susc.2005.09.038
  7. Fei, B.; Deng, Z.; Xin, J. H.; Zhang, Y. H.; Pang, G. Nanotechnology 2006, 17, 1927. https://doi.org/10.1088/0957-4484/17/8/021
  8. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897. https://doi.org/10.1126/science.1060367
  9. Rodriguez, J. A.; Jirsak, T.; Dvorak, J.; Sambasivan, S.; Fischer, D. J. Phys. Chem. B 2000, 104, 319. https://doi.org/10.1021/jp993224g
  10. Wang, Y.; Li, X.; Lu, G.; Quan, X.; Chen, G. J. Phys. Chem. C 2008, 112, 7332.
  11. Liu, C. H.; Zapien, J. A.; Yao, Y.; Meng, X. M.; Lee, C. S.; Fan, S. S.; Lifshitz, Y.; Lee, S. T. Adv. Mater. 2003, 15, 838. https://doi.org/10.1002/adma.200304430
  12. Zhang, H.; Luo, X.; Xu, J.; Xiang, B.; Yu, D. J. Phys. Chem. B 2004, 108, 14866. https://doi.org/10.1021/jp049770d
  13. Lee, S. K.; Chung, K. W.; Kim, S. G. Aerosol Sci. Tech. 2002, 36, 763. https://doi.org/10.1080/02786820290038456
  14. Hwang, S. T.; Hahn, Y. B.; Nahm, K. S.; Lee, Y. S. Colloid Surface A 2005, 259, 63. https://doi.org/10.1016/j.colsurfa.2005.02.026
  15. Hu, Y.; Li, C.; Gu, F.; Zhao, Y. J. Alloy Compd. 2007, 432, L5. https://doi.org/10.1016/j.jallcom.2006.05.134
  16. Zhang, Y.; Wu, Y.; Chen, M.; Wu, L. Colloid Surface A 2010, 353, 216. https://doi.org/10.1016/j.colsurfa.2009.11.016
  17. Ismail, A. A.; Ibrahim, I. A.; Ahmed, M. S.; Mohamed, R. M.; Elshall, H. J. Photoch. Photobioy. A 2004, 163, 445. https://doi.org/10.1016/j.jphotochem.2004.01.017
  18. Lee, B. S.; Kang, D. J.; Kim, S. G. J. Mater. Sci. 2003, 38, 3545. https://doi.org/10.1023/A:1025656709970
  19. Liang, H. P.; Wan, L. J.; Bai, C. L.; Jiang, L. J. Phys. Chem. B 2005, 109, 7795. https://doi.org/10.1021/jp045006f
  20. Nann, T.; Mulvaney, P. Angew. Chem. Int. Ed. 2004, 43, 5393. https://doi.org/10.1002/anie.200460752
  21. Chan, Y.; Zimmer, J. P.; Stroh, M.; Steckel, J. S.; Jain, R. K.; Bawendi, M. G. Adv. Mater. 2004, 16, 2092. https://doi.org/10.1002/adma.200400237
  22. Li, F.; Huang, X.; Jiang, Y.; Liu, L.; Li, Z.; Mat. Res. Bull. 2009, 44, 437. https://doi.org/10.1016/j.materresbull.2008.04.024
  23. Wang, J.; Tsuzuki, T.; Sun, L.; Wang, X. ACS Appl. Mater. Inter. 2010, 2, 957. https://doi.org/10.1021/am100051z
  24. Patil, U. M.; Gurav, K. V.; Joo, O.-S.; Lokhande, C. D. J. Alloys and Comp. 2009, 478, 711. https://doi.org/10.1016/j.jallcom.2008.11.160
  25. Sclafani, A.; Herrmann, J. M. J. Phys. Chem. 1996, 100, 13655. https://doi.org/10.1021/jp9533584

Cited by

  1. Use of nanofillers in wood coatings: a scientific review vol.12, pp.3, 2015, https://doi.org/10.1007/s11998-015-9659-2
  2. Computational design of safer nanomaterials vol.2, pp.5, 2015, https://doi.org/10.1039/C5EN00066A
  3. Surface coating performance of TiO2 nanoparticle-modified veneered panels and their influence on formaldehyde emission vol.14, pp.6, 2017, https://doi.org/10.1007/s11998-017-9925-6
  4. nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health vol.7, pp.70, 2017, https://doi.org/10.1039/C7RA06925A
  5. Interactions of titania based nanoparticles with silica and green-tea: Photo-degradation and -luminescence vol.475, pp.None, 2016, https://doi.org/10.1016/j.jcis.2016.04.038
  6. Ultrafast sonochemistry-based approach to coat TiO2 commercial particles for sunscreen formulation vol.48, pp.None, 2012, https://doi.org/10.1016/j.ultsonch.2018.06.015
  7. Na-doped ZnO UV filters with reduced photocatalytic activity for sunscreen applications vol.55, pp.7, 2020, https://doi.org/10.1007/s10853-019-04122-2
  8. Pulsed Plasma-Chemical Modification of SiO 2 Nanopowder by Zn x O y Nanoparticles vol.20, pp.1, 2012, https://doi.org/10.1142/s0219581x21500058
  9. Suppressing the Photocatalytic Activity of Titania by Precisely Controlled Silica Coating vol.60, pp.9, 2012, https://doi.org/10.1021/acs.inorgchem.0c03476