DOI QR코드

DOI QR Code

Dynamic Characteristics of Plastic Materials for Automobile Cockpit Module

자동차 칵핏 모듈용 플라스틱 소재의 열화 동특성 평가

  • Woo, Chang Su (Dept. of Nano Mechanics, Korea Institute of machinery & Materials) ;
  • Park, Hyun Sung (Dept. of Nano Mechanics, Korea Institute of machinery & Materials) ;
  • Jo, Jin Ho (R&D Center-NVH Team, NVH Korea INC.) ;
  • Kim, Ji Hoon (R&D Center-NVH Team, NVH Korea INC.) ;
  • Choi, Ju Ho (Dept. of Aerospace & Mechanical Engineering, Korea Aerospace Univ.) ;
  • Kim, Yeoung Kuk (Dept. of Aerospace & Mechanical Engineering, Korea Aerospace Univ.)
  • 우창수 (한국기계연구원 나노역학실) ;
  • 박현성 (한국기계연구원 나노역학실) ;
  • 조진호 (NVH Korea(주) 시험평가팀) ;
  • 김지훈 (NVH Korea(주) 시험평가팀) ;
  • 최주호 (한국항공대학교 기계공학과) ;
  • 김영국 (한국항공대학교 기계공학과)
  • Received : 2012.05.17
  • Accepted : 2012.08.22
  • Published : 2012.12.01

Abstract

Engineering plastics are used in instrument panels, interior trim, and other vehicle applications, and the thermomechanical behaviors of plastic materials are strongly influenced by many environmental factors such as temperature, sunlight, and rain. As the material properties change, the mechanical parts create unexpected noise. In this study, the dynamic mechanical property changes of plastics used in automobiles are measured to investigate the temperature effects. Viscoelastic properties such as the glass transition temperature and storage modulus and loss factor under temperature and frequency sweeps were measured. The data were compared with the original ones before aging to analyze the behavior changes. It was found that as the temperature increased, the storage modulus decreased and the loss factor increased slightly.

플라스틱 소재는 온도, 습도 및 자외선 등 다양한 환경의 영향으로 인해 기계적 물성변화가 심하기 때문에 체결부의 견고함이 느슨해지고 형태의 변형에 의해 부품간의 마찰 등을 유발하여 잡음이 발생하게 된다. 따라서, 본 논문에서는 자동차 칵핏 모듈에 사용되는 다양한 플라스틱 소재에 대해 온도변화에 따른 동 특성시험을 통해 유리전이온도, 저장탄성계수, 손실계수 등을 측정하여 상온 및 열화조건에 따른 물성변화를 파악하였다. 시험결과, 온도가 높을수록 저장탄성계수는 감소하고 손실계수는 증가하는 경향을 나타내었다.

Keywords

References

  1. Raj, S. and Ramana, K., 2001, "Automotive Body Structure Enhancement for Buzz, Squeak and Rattle," Society od Automotive Engineering, #04AC-67.
  2. Farokh, K. and Bennt, R., 2001, "Squeak and Rattle- State of the Art and Beyond," Sound and Vibration.
  3. Volynskii, A. L., Efimov, A. V. and Bakeev, N. F., 2007, "Structural Aspects of Physical Aging of Polymer Glasses." Polymer Science, Ser. C, Vol. 49, pp. 301-320.
  4. Sullivan, J. L., Blais, E. L. J. and Houston, D., 1993, "Physical Aging in Creep Behavior of Thermosetting and Thermoplastic Composites," Composite Science and Technology, Vol. 47, pp. 389-403. https://doi.org/10.1016/0266-3538(93)90008-5
  5. Bradshaw, R. D. and Brinson, L. C., 1997, "Physical Aging in Polymers and Polymer Composites : An Analysis and Method for Time-Aging Time Superposition," Polymer Engineering and Science, Vol. 37, pp. 31-44. https://doi.org/10.1002/pen.11643
  6. Kim, H. J., Cho, H., Son, Y. T., Kim, H. K., Kim, H. Y. and Suh, M. Y., 2010, "Derivation of Optimal Design of Cockpit Module Considering Vibration and Heat-Resistance Characteristics," Trans. of the KSME (B), Vol. 24, No. 6, pp. 1219-1224.
  7. Ferry, J. D., 1970, Viscoelastic Properties of Polymer, 2nd ed., John Wiley Interscience, New York.
  8. Aklonis, J. J. and. Macknight, W. J., 1983, Introduction of Polymer Viscoelasticity, 2nd ed., Wiley- Science Publication, New York.
  9. ASTM D4473-0, Standard Test Method for Plastics : Dynamic Mechanical Properties.