DOI QR코드

DOI QR Code

Monte Carlo Simulation of Thermionic Low Pressure Discharge Plasma

저압 열전자 방전 플라즈마의 Monte Carlo 시뮬레이션

  • Koh, Wook Hee (Dept. of Electronics, Computer and Communication, Hanseo Univ.)
  • 고욱희 (한서대학교 전자컴퓨터통신학부)
  • Received : 2012.10.07
  • Accepted : 2012.11.13
  • Published : 2012.12.01

Abstract

Nonlinear dynamical behaviors in thermionic low pressure discharge are investigated using a particle-in-cell(PIC) simulation. An electrostatic PIC code is developed to model the plasma discharge system including the kinetic effects. The elastic collision, excitation collision, ionization collision, and electron-ion recombination collision are considered in this code. The generated electrons and ions are traced to analyze physical characteristics of the plasma. The simulation results show that the nonlinear oscillation structures are observed for cold plasma in the system and the similar structures are observed for warm plasma with a shift in values of the bifurcation parameter. The detailed oscillation process can be subdivided into three distinct mode; anode-glow, temperature-limited, and double-layer modes.

Keywords

References

  1. Y. P. Raizer, Gas Discharge Physics, (Berlin:Springer, 1991).
  2. T. Klinger, F. Greiner, A. Rohde and A. Pier, Phys. Plasma 2, 1822 (1995). https://doi.org/10.1063/1.871336
  3. P. Y. Cheung and A. Y. Wang, Phys. Rev. Lett. 59, 551 (1987). https://doi.org/10.1103/PhysRevLett.59.551
  4. C. A. Capeau, G. Bachet, and F. Doveil, Phys. Plasmas 2, 4650 (1995). https://doi.org/10.1063/1.870956
  5. W. X. Ding, T. Klinger, and A. Piel, Phys. Lett. A 222, 409 (1996). https://doi.org/10.1016/S0375-9601(96)00661-5
  6. J. R. Pierce, J. Appl. Phys. 15, 721 (1944). https://doi.org/10.1063/1.1707378
  7. J. R. Cary, J. Appl. Phys. 53, 3303 (1982). https://doi.org/10.1063/1.330986
  8. B. B. Godfrey, Phys. Fuilds 30, 1553 (1987). https://doi.org/10.1063/1.866217
  9. F. Greiner, T. Klinger, H. Klostermann and A. Pier, Phys. Rev. Lett. 70, 3071 (1993). https://doi.org/10.1103/PhysRevLett.70.3071
  10. T. L. Crystal and S. Kuhn, Phys. Plasma 28, 2116 (1985).
  11. H. Matsumoto, H. Yokoyama, and D. Summers, Phys. Plasma 3, 177 (1996). https://doi.org/10.1063/1.871844
  12. Wook Hee Koh, In-Ho Park, J. Korean Vacuum Society 21, No.5, 249 (2012). https://doi.org/10.5757/JKVS.2012.21.5.249
  13. Wook Hee Koh and In-Ho Park, "Numerical Simulation of Point-to-Plane Corona Discharge using a Monte Carlo Method", Vacuum 84, p.550, (2010).
  14. C. K. Birdshall, IEEE Trans. Plasma Sci. 19, 65 (1991). https://doi.org/10.1109/27.106800
  15. S. C. Brown, Basic data of plasma physics, (Cambridge:M.I.T, (1967).
  16. J. C. Butcher, Numerical Methods for Ordinary Differential Equations, New York: John Wiley & Sons, (2003)