DOI QR코드

DOI QR Code

Thermodynamic Interactions Among Carbon, Silicon and Iron in Carbon Saturated Manganese Melts

탄소 포화 Mn 합금 용액내 C, Si 및 Fe 사이의 열역학적 상호작용

  • Paek, Min-Kyu (Department of Metallurgical and Materials Engineering, Hanyang University) ;
  • Lee, Won-Kyu (Department of Metallurgical and Materials Engineering, Hanyang University) ;
  • Jin, Jinan (Department of Metallurgical and Materials Engineering, Hanyang University) ;
  • Jang, Jung-Mock (Department of Metallurgical and Materials Engineering, Hanyang University) ;
  • Pak, Jong-Jin (Department of Metallurgical and Materials Engineering, Hanyang University)
  • 백민규 (한양대학교 금속재료공학과) ;
  • 이원규 (한양대학교 금속재료공학과) ;
  • 김길남 (한양대학교 금속재료공학과) ;
  • 장정목 (한양대학교 금속재료공학과) ;
  • 박종진 (한양대학교 금속재료공학과)
  • Received : 2011.12.05
  • Published : 2012.01.25

Abstract

Thermodynamics of carbon in manganese alloy melts is important in manufacturing low carbon ferromanganese and silico-manganese alloys. In order to predict the carbon solubility in liquid $Mn-Si-Fe-C_{sat}$ alloys as a function of melt composition and temperature, thermodynamic interactions among carbon, silicon and iron in carbon saturated liquid manganese should be known. In the present study, the effects of silicon and iron on the carbon solubility in Mn-Si, Mn-Fe and Mn-Si-Fe melts were measured in the temperature range from 1673 to 1773 K. The carbon solubility decreases significantly as silicon and iron contents increase in liquid manganese alloy. The interaction parameters among carbon, silicon and iron in carbon saturated liquid manganese were determined from the carbon solubility data and the Lupis' relation for the interaction coefficient at constant activity.

Keywords

Acknowledgement

Grant : 고합금강제조를 위한 고기능 합금철 정련 기술

Supported by : 지식경제부

References

  1. B. D. You, B. W. Lee, and J. J. Pak, Met. Mater. Int. 5, 497 (1999).
  2. S. E. Olsen, M. Tangstad, and T. Lindstad, Production of Manganese Ferroalloys, SINTEF and Tapir Academic Press, Trondheim, (2007).
  3. E. J. Kim, B. D. You, and J. J. Pak, Met. & Mater. Trans. 34B, 51 (2003).
  4. A. Katsnelson, F. Tsukihashi, and N. Sano, ISIJ Int. 33, 1045 (1993).
  5. E. T. Turkdogan, R. A. Hancock, S. I. Herlitz, and J. Dentan, J. Iron Steel. Inst. 183, 69 (1956).
  6. E. T. Turkdogan, R. A. Hancock, and S. I. Herlitz, J. Iron Steel. Inst. 182, 274 (1956).
  7. H. Schenck, M. G. Frohberg, and E. Steinmetz, Arch. Eisenhuttenwes 34, 37 (1963).
  8. R. Ni, Z. Ma, and S. Wei, Steel Research 61, 113 (1990).
  9. J. Fenstad, Dr. Ing. Thesis, 12, Norwegian University of Science and Technology, Trondheim, Norway (2000).
  10. J. Chipman, R. M. Alfred, L. W. Gott, R. B. Small, D. M. Wilson, C. N. Thomson, D. L. Guernsey, and J. C. Fulton, Trans. Am. Soc. Met. 44, 1215 (1952).
  11. K. Tang, V. Olso, and S. E. Olsen, Process metallurgy 73, 77 (2003).
  12. W. Ding and S. E. Olsen, Met. & Mater. Trans. 27B, 5 (1996).
  13. R. Gee and T. Rosenqvist, Scandinavian J. Metallurgy 5, 57 (1976).
  14. J. K. Tuset and J. Sandvik, SINTEF Report No.340358, (1970).
  15. C. Wagner, Thermodynamics of Alloys, Addision-Wesley, Reading, Massachusetts, 51 (1962).
  16. C. H. P. Luuus, Acta Met. 16, 1365 (1968).
  17. C. H. P. Lupis and J. F. Elliott, Acta Met. 14, 529(1966).
  18. H. G. Hadrys, M. G. Frohberg, and J. F. Elliott, Met. Trans. 1, 1867 (1970).
  19. N. Anacleto, O. Ostrovski, and S. Ganguly, Steel Research 77, 227 (2006).