Cucurbitacin I, a Natural Cell-permeable Triterpenoid, Suppresses Colitis-associated Colon Carcinogenesis in Mice

  • Kim, Hyeon Jin (Department of Biomedical Science, Catholic University of Daegu) ;
  • Kim, Jin-Kyung (Department of Biomedical Science, Catholic University of Daegu)
  • 투고 : 2013.08.07
  • 심사 : 2013.09.02
  • 발행 : 2013.09.30

초록

Cucurbitacins are a natural cell-permeable triterpenoid compound isolated from Cucurbitaceae and Cruciferae. Cucurbitacins have been used as folk medicine because of their anti-inflammatory and analgesic effects. In the present study, we investigate the anti-cancer effects of cucurbitacin I on colitis-associated colon carcinogenesis induced by azoxymethane (AOM)/dextran sodium sulfate (DSS) in BALB/c mice. Cucurbitacin I treatment attenuated loss of body weight and decreased the number of colon tumors. Western blot analysis showed that cucurbitacin I treatment significantly inhibited the protein expression of inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6. These results suggest that cucurbitacin I suppressed inflammatory reaction and tumor development in colitis-associated colon carcinogenesis.

키워드

참고문헌

  1. Alghasham AA. Cucurbitacins - a promising target for cancer therapy. Int J Health Sci (Qassim). 2013. 7: 77-89.
  2. Atreya R, Neurath MF. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clin Rev Allergy Immunol. 2005. 28: 187-196. https://doi.org/10.1385/CRIAI:28:3:187
  3. Chen X, Bao J, Guo J, Ding Q, Huang M, Wang Y. Biological activities and potential molecular targets of cucurbitacins: a focus on cancer. Anticancer Drugs. 2012. 23: 777-787. https://doi.org/10.1097/CAD.0b013e3283541384
  4. Choi MN, Jo HY, Han BS, Jang DD, Kim JD, Nam SY, Kim YB, Lee BJ, Yun YW, Ahn BW. Supression of azoxymethane-induced colorectal tumor in iNOS-/-C57BL/6 mice. Lab Anim Res. 2006. 22: 135-138.
  5. De Robertis M, Massi E, Poeta ML, Carotti S, Morini S, Cecchetelli L, Signori E, Fazio VM. The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. J Carcinog. 2011. 10: 9. https://doi.org/10.4103/1477-3163.78279
  6. Duangmano S, Sae-Lim P, Suksamrarn A, Patmasiriwat P, Domann FE. Cucurbitacin B causes increased radiation sensitivity of human breast cancer cells via G2/M cell cycle arrest. J Oncol. 2012. 2012: 601-682.
  7. Duncan KL, Ducan MD, Alley MC, Sauscille EA. Cucurbitacin E-induced disruption of the actin and vimentin cytoskeleton in prostate carcinoma cells. Biochem Pharmacol. 1996. 52: 1553-1560. https://doi.org/10.1016/S0006-2952(96)00557-6
  8. Gillen CD, Walmsley RS, Zack M, Adami HO. Ulcerative colitis and Crohn's disease: a comparison of the colorectal cancer risk in extensive colitis. Gut. 1994. 35: 1590-1592. https://doi.org/10.1136/gut.35.11.1590
  9. Greengough A, Samrtt HJ, Moore AE, Roverts HR, Willians AC, Paraskeva C, Kaidi A. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumor microenvironment. Carcinogenesis. 2009. 30: 377-386. https://doi.org/10.1093/carcin/bgp014
  10. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L, Karin M. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009. 15: 103-113. https://doi.org/10.1016/j.ccr.2009.01.001
  11. Hale LP, Greer PK. A novel murine model of inflammatory bowel disease and inflammation-associated colon cancer with ulcerative colitis-like features. PLoS One. 2012. 7: e41797. https://doi.org/10.1371/journal.pone.0041797
  12. Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K, Nakamura S, Ogawa M, Mitsudomi T, Sugiura T, Takahashi T. Increase expression of cyclooxygenase 2 occurs frequently in human lung cancer, specifically in adenocarcinomas. Cancer Res. 1998. 58: 3761-3764.
  13. Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 2005. 41: 2502-2512. https://doi.org/10.1016/j.ejca.2005.08.016
  14. Jemal A, Murray T, Samuels A, Ghafoor A. Ward E, Thun MJ. Cancer statistics, 2003. CA cancer J Clin. 2003. 53: 5-26. https://doi.org/10.3322/canjclin.53.1.5
  15. Kim YH, Kwon HS, Kim DH, Shin EK, Kang YH, Park JH, Shin HK, Kim JK. 3, 3'-diindolylmethane attenuates colonic inflammation and tumorigenesis in mice. Inflamm Bowel Dis. 2009. 15: 1164-1173. https://doi.org/10.1002/ibd.20917
  16. Korea Central Cancer Registry, Ministry of Health & Welfare, National Cancer Center. Annual report of cancer statistics in Korea in 2010. Available at http://www.cancer.go.kr/ncic/cics_g02/cics_g027/1389370_6095.html
  17. Li H, Wu WK, Li ZJ, Chan KM, Wong CC, Ye CG, Sung JJ, Cho CH, Wang M. 2, 3', 4, 4', 5'-Pentamethoxy-transstilbene, a resveratrol derivative, inhibits colitis-associated colorectal carcinogenesis in mice. Br J Pharmacol. 2010. 160: 1352-1361. https://doi.org/10.1111/j.1476-5381.2010.00785.x
  18. McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie QW, Nathan CF, Wahl SM. Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med. 1998. 178: 749-754.
  19. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C, Mukaida N. Blocking TNFalpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest. 2008. 118: 560-570.
  20. Sandborn WJ, Hanauer SB. Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results, and safety. Inflamm Bowel Dis. 1999. 5: 119-133. https://doi.org/10.1097/00054725-199905000-00008
  21. Sarkar D, Saha P, Gamre S, Bhattacharjee S, Hariharan C, Ganguly S, Sen R, Mandal G, Chattopadhyay S, Majumdar S, Chatterjee M. Anti-inflammatory effect of allylpyrocatechol in LPS-induced macrophages is mediated by suppression of iNOS and COX-2 via the NF-kappaB pathway. Int Immunopharmacol. 2008. 8: 1264-1271. https://doi.org/10.1016/j.intimp.2008.05.003
  22. Sun J, Chu YF, Wu X, Liu RH. Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem. 2002. 50: 7449-7454. https://doi.org/10.1021/jf0207530
  23. Sun J, Blskovich MA, Jove R, Livingston SK, Coppola D, Sebti SM. Cucurbitacin I Q: a selective STAT3 activation inhibitor with potent antitumor activity. Oncogene. 2005. 24: 3236-3245. https://doi.org/10.1038/sj.onc.1208470
  24. Tanaka T. Development of an inflammation-associated colorectal cancer model and its application for research on carcinogenesis and chemoprevention. Int J Inflam. 2012. 2012: 658-786.
  25. Thoennissen NH, Iwanski GB, Doan NB, Okamoto R, Lin P, Abbassi S, Song JH, Yin D, Toh M, Xie WD, Said JW, Koeffler HP. Cucurbitacin B induces apoptosis by inhibition of the JAK/STAT pathway and potentiates antiproliferative effects of gemcitabine on pancreatic cancer cells. Cancer Res. 2009. 69: 5876-5884. https://doi.org/10.1158/0008-5472.CAN-09-0536
  26. Tracey KJ. The inflammatory reflex. Nature. 2002. 420: 853-859. https://doi.org/10.1038/nature01321
  27. Youn J, Lee JS, Na HK, Kundu JK, Surh YJ. Resveratrol and piceatannol inhibit iNOS expression and NF-kappaB activation in dextran sulfate sodium-induced mouse colitis. Nutr Cancer. 2009. 61: 847-854. https://doi.org/10.1080/01635580903285072
  28. Yun HY, Dawson VL, Dawson TM. Neurobiology of nitric oxide. Crit Rev Neurobiol. 1996. 10: 291-316. https://doi.org/10.1615/CritRevNeurobiol.v10.i3-4.20
  29. Zhang R. Induction of inducible nitric oxide synthase: a protective mechanism in colitis-induced adenocarcinoma. Carcinogenesis. 2007. 28: 1120-1130.
  30. Zhang T, Li J, Dong Y, Zhai D, Lai L, Dai F, Deng H, Chen Y, Liu M, Yi Z. Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion. Breast Cancer Res Treat. 2012. 135: 445-458. https://doi.org/10.1007/s10549-012-2175-5