DOI QR코드

DOI QR Code

Measurement of Wafer Deformation using Deflectometry

편향법을 이용한 웨이퍼 변형 측정

  • Received : 2013.10.07
  • Accepted : 2013.10.28
  • Published : 2013.12.25

Abstract

Phase-measuring deflectometry is a full-field gradient measuring technique that lends itself very well to testing specular optical surfaces. We have measured deformation of a large specular surface by deflectometry. In this work, we have used a Fourier-transform method to get the phase from a measured deformed fringe pattern, and we have used least squares method to obtain the height information of the specular surface from the calculated slope. Experimentally, we have confirmed that deflectometry can be used for deformation measurement of a specular surface like that of a wafer.

편향법을 이용하여 면적이 비교적 크고 거울과 같이 산란이 거의 없는 물체의 3차원 측정을 하였다. 편향법을 통해 얻은 왜곡 무늬로부터 위상과 기울기를 구하기 위해 푸리에변환 방법을 이용하였고, 구한 기울기로부터 높이를 구하기 위해 최소자승법을 이용하였다. 웨이퍼에 미세 응력을 주었을 때 변형을 편향법을 이용하여 측정할 수 있음을 확인하였다.

Keywords

References

  1. J. Horbach and T. Dang, "3D reconstruction of specular surfaces using a calibrated projector-camera setup," Mach. Vis. Appl. 21, 331-340 (2010). https://doi.org/10.1007/s00138-008-0165-8
  2. D. Malacara, Optical Shop Testing (Wiley & Sons, Inc., USA, 2007).
  3. S. Gorthi and P. Rastogi, "Fringe projection techniques: Whither we are?," Opt. Lasers Eng. 48, 133-140 (2010). https://doi.org/10.1016/j.optlaseng.2009.09.001
  4. T. C. J. Tay, M. Thakur, and C. Quan, "Grating projection system for surface contour measurement," Appl. Opt. 44, 1393-1400 (2005). https://doi.org/10.1364/AO.44.001393
  5. Y. Y. Hung, L. Lin, H. M. Shang, and B. G. Park, "Practical three-dimensional computer vision techniques for full-field surface measurement," Opt. Eng. 29, 143-149 (2000).
  6. H. Miao, C. Quan, C. J. Tay, and Y. Fu, "Analysis of phase distortion in phase-shifted fringe projection," Opt. Lasers Eng. 45, 318-325 (2007). https://doi.org/10.1016/j.optlaseng.2005.12.008
  7. M. C. Knauer, J. Kaminski, and G. Hausler, "Phase measuring deflectometry: A new approach to measure specular freeform surfaces," Proc. SPIE 5457, 366-376 (2004).
  8. J. Horbach and T. Dang, "3D reconstruction of specular surfaces using a calibrated projector-camera setup," Mach. Vis. Appl. 21, 331-340 (2010). https://doi.org/10.1007/s00138-008-0165-8
  9. Y. Tang, X. Su, Y. Liu, and H. Jing, "3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry," Opt. Express 16, 15090-15096 (2008). https://doi.org/10.1364/OE.16.015090
  10. G. Hausler, C. Richter, K. H. Leitz, and M. C. Knauer, "Micro deflectometry a novel tool to acquire 3D micro topography with nanometer height resolution," J. Opt. Lett. 33, 396-398 (2008). https://doi.org/10.1364/OL.33.000396
  11. C. Quan, C. J. Tay, X. Kang, X. Y. He, and H. M. Shang, "Shape measurement by use of liquid-crystal display fringe projection with two-step phase shifting," Appl. Opt. 42, 2329-2335 (2003). https://doi.org/10.1364/AO.42.002329
  12. M. Takeda and K. Mutoh, "Fourier transform profilometry for the automatic measurement of 3-D object shapes," Appl. Opt. 22, 3977-3982 (1983). https://doi.org/10.1364/AO.22.003977
  13. M. Takeda, "Spatial-carrier fringe-pattern analysis and its applications to precision interferometry and profilometry: An overview," Industrial Metrology 1, 79-99 (1990). https://doi.org/10.1016/0921-5956(90)80019-R
  14. P. Liang, J. Ding, Z. Lin, C. S. Guo, and H. T. Wang, "Two-dimensional wave-front reconstruction from lateral shearing interferograms," Opt. Express 14, 625-634 (2006). https://doi.org/10.1364/OPEX.14.000625
  15. H.-G. Rhee, Y.-S. Ghim, J. Lee, H.-S. Yang, and Y.-W. Lee, "Correction of rotational inaccuracy in lateral shearing interferometry for freeform measurement." Opt. Express 21, 24799-24808 (2013). https://doi.org/10.1364/OE.21.024799
  16. D. L. Fried, "Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements," J. Opt. Soc. Am. 67, 370-375 (1977). https://doi.org/10.1364/JOSA.67.000370
  17. W. H. Southwell, "Wave-front estimation from wave-front slope measurements," J. Opt. Soc. Am. 70, 998-1006 (1980). https://doi.org/10.1364/JOSA.70.000998
  18. L. Huang and A. Asundi, "Improvement of least-squares integration method with iterative compensations in fringe reflectometry," Appl. Opt. 51, 7459-7465 (2012). https://doi.org/10.1364/AO.51.007459
  19. M. Takeda, I. Hideki, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982). https://doi.org/10.1364/JOSA.72.000156
  20. D. C. Ghiglia and M. D. Pritt, Two-dimensional Phase Unwrapping (John Wiley & Sons., Inc. USA, 1999).
  21. Y. L. Xiao, X. Su, and W. Chen, "Flexible geometrical calibration for fringe reflection 3D measurement," Opt. Lett. 37, 620-622 (2012). https://doi.org/10.1364/OL.37.000620
  22. J. Periong, K. Jonathan, and E. Chad, "Comparison of linear and nonlinear calibration methods for phase-measuring profilometry," Opt. Eng. 46, 043601-10 (2007). https://doi.org/10.1117/1.2721025
  23. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999). https://doi.org/10.1364/AO.38.006994
  24. H. Cho, D. Kim, Y. Yu, W. Jung, and S. Shin, "3-dimensional measurement using digital holographic microscope and phase unwrapping," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 17, 329-334 (2006). https://doi.org/10.3807/KJOP.2006.17.4.329