DOI QR코드

DOI QR Code

Environmental Applications of Rare-Earth Manganites as Catalysts: A Comparative Study

  • Alami, D. (Department of Inorganic Substances Technology, National Techical University "Kharkiv Polytechnic Institute")
  • 투고 : 2013.05.01
  • 심사 : 2013.08.01
  • 발행 : 2013.12.30

초록

Rare-earth manganites have a great potential for environmental applications based on their chemical and physical properties. The use of rare-earth manganites as catalysts for environmentally essential reactions was reviewed. Artificial neural networks were used to assess the catalytic activity in oxidation reactions. Relative catalytic activities of the catalysts were further discussed. We concluded that cerium manganite is the most practicable catalyst for technological purposes.

키워드

참고문헌

  1. Centi G, Ciambelli P, Perathoner S, Russo P. Environmental catalysis: trends and outlook. Catal. Today 2002;75:3-15. https://doi.org/10.1016/S0920-5861(02)00037-8
  2. Pena MA, Fierro JL. Chemical structures and performance of perovskite oxides. Chem. Rev. 2001;101:1981-2018. https://doi.org/10.1021/cr980129f
  3. Abordeoaei L, Papp HI. Perovskite utilisation as catalysts in NO reduction by SCR-HC in absence of $O_2$. Environ. Eng. Manag. J. 2004;3:755-760.
  4. Laberty C, Navrotsky A, Rao CN, Alphonse P. Energetics of rare earth manganese perovskites A1-xA'xMn$O_3$ (A=La, Nd, Y and A'=Sr, La) systems. J. Solid State Chem. 1999;145:77-87. https://doi.org/10.1006/jssc.1999.8220
  5. Uemura S, Mitsudo T, Haruta M, Inui T. Frontiers and tasks of catalysis towards the next century. Proceedings of the International Symposium in honour of Professor Tomoyuki Inui. Utrecht: VSP; 1998.
  6. Isupova LA, Sadykov VA, Solovyova LP, et al. Monolith perovskite catalysts of honeycomb structure for fuel combustion. Stud. Surf. Sci. Catal. 1995;91:637-645. https://doi.org/10.1016/S0167-2991(06)81803-3
  7. Spinicci R, Faticanti M, Marini P, De Rossi S, Porta P. Catalytic activity of $LaMnO_3$ and $LaCoO_3$ perovskites towards VOCs combustion. J. Mol. Catal. A Chem. 2003;197:147-155. https://doi.org/10.1016/S1381-1169(02)00621-0
  8. Chirila LM, Papp H, Suprun W, Balasanian I. Synthesis, characterization and catalytic reduction of $NO_x$ emissions over $LaMnO_3$ perovskite. Environ. Eng. Manag. J. 2007;6:549-553.
  9. Yonghua C, Futai M, Hui L. Catalytic properties of rare earth manganites and related compounds. React. Kinet. Catal. Lett. 1988;37:37-42. https://doi.org/10.1007/BF02061707
  10. Liu Y, Dai H, Du Y, et al. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous $LaMnO_3$ with nanovoid skeletons for the combustion of toluene. J. Catal. 2012;287:149-160. https://doi.org/10.1016/j.jcat.2011.12.015
  11. Li C, Lin Y. Methanol partial oxidation over palladium-, platinum-, and rhodium-integrated $LaMnO_3$ perovskites. Appl. Catal. B 2011;107:284-293. https://doi.org/10.1016/j.apcatb.2011.07.026
  12. Zhang C, Wang C, Zhan W, et al. Catalytic oxidation of vinyl chloride emission over $LaMnO_3$ and $LaB_{0.2}Mn_{0.8}O_3$ (B=Co, Ni, Fe) catalysts. Appl. Catal. B 2013;129:509-516. https://doi.org/10.1016/j.apcatb.2012.09.056
  13. Ran R, Wu X, Quan C, Weng D. Effect of strontium and cerium doping on the structural and catalytic properties of $PrMnO_3$ oxides. Solid State Ion. 2005;176:965-971. https://doi.org/10.1016/j.ssi.2004.11.018
  14. Tang X, Li Y, Huang X, et al. $MnO_xCeO_2$ mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Appl. Catal. B 2006;62:265-273. https://doi.org/10.1016/j.apcatb.2005.08.004
  15. Liu J, Zhao Z, Xu C. Research progress in catalysts for removal of soot particulates from diesel engines. Chin. J. Catal. 2004;25:673-680.
  16. Raj SL, Srinivasan V. Decomposition of nitrous oxide on rare earth manganites. J. Catal. 1980;65:121-126. https://doi.org/10.1016/0021-9517(80)90284-5
  17. Lombardo EA, Ulla MA. Perovskite oxides in catalysis: past, present and future. Res. Chem. Intermed. 1998;24:581-592. https://doi.org/10.1163/156856798X00104
  18. Arai H, Yamada T, Eguchi K, Seiyama T. Catalytic combustion of methane over various perovskite-type oxides. Appl. Catal. 1986;26:265-276. https://doi.org/10.1016/S0166-9834(00)82556-7
  19. Lintz HG, Wittstock K. Catalytic combustion of solvent containing air on base metal catalysts. Catal. Today 1996;29:457-461. https://doi.org/10.1016/0920-5861(95)00320-7
  20. Luna AJ, Rojas LOA, Melo DMA, Benachour M, Sousa JF. Total catalytic wet oxidation of phenol and its chlorinated derivates with $MnO_2$/$CeO_2$ catalyst in a slurry reactor. Braz. J. Chem. Eng. 2009;26:493-502. https://doi.org/10.1590/S0104-66322009000300005
  21. Zhou G, Shah PR, Gorte RJ. A study of cerium-manganese mixed oxides for oxidation catalysis. Catal. Lett. 2008;120:191-197. https://doi.org/10.1007/s10562-007-9299-y
  22. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011;3:546-550. https://doi.org/10.1038/nchem.1069
  23. Rezlescu N, Rezlescu E, Doroftei C, Popa PD, Ignat M. Nanostructured lanthanum manganite perovskites in catalyst applications. Dig. J. Nanomater. Biostruct. 2013;8:581-587.
  24. Arakawa T, Yoshida A, Shiokawa J. The catalytic activity of rare earth manganites. Mater. Res. Bull. 1980;15:269-273. https://doi.org/10.1016/0025-5408(80)90129-4
  25. Yamazoe N, Teraoka Y. Oxidation catalysis of perovskites: relationships to bulk structure and composition (valency, defect, etc.). Catal. Today 1990;8:175-199. https://doi.org/10.1016/0920-5861(90)87017-W
  26. Voorhoeve RJ, Johnson DW Jr, Remeika JP, Gallagher PK. Perovskite oxides: materials science in catalysis. Science 1977;195:827-833. https://doi.org/10.1126/science.195.4281.827
  27. Kalashnikova AM, Pisarev RV. Electronic structure of hexagonal rare-earth manganites $RMnO_3$. J. Exp. Theor. Phys. Lett. 2003;78:143-147. https://doi.org/10.1134/1.1618880
  28. Moro-Oka Y, Morikawa Y, Ozaki A. Regularity in the catalytic properties of metal oxides in hydrocarbon oxidation. J. Catal. 1967;7:23-32. https://doi.org/10.1016/0021-9517(67)90004-8
  29. Vijh AK, Lenfant P. Significance of heterogeneous catalysis of certain oxidation reactions by oxides in relation to their heats of formation. Can. J. Chem. 1971;49:809-812.
  30. Aronson S. Estimation of the heat of formation of refractory mixed oxides. J. Nucl. Mater. 1982;107:343-346. https://doi.org/10.1016/0022-3115(82)90436-6
  31. Vonka P, Leitner J. A method for the estimation of the enthalpy of formation of mixed oxides in $Al_2O_3$-$Ln_2O_3$ systems. J. Solid State Chem. 2009;182:744-748. https://doi.org/10.1016/j.jssc.2008.12.016
  32. Yokokawa H, Kawada T, Dokiya M. Thermodynamic regularities in perovskite and $K_2NiF_4$ compounds. J. Am. Ceram. Soc. 1989;72:152-153. https://doi.org/10.1111/j.1151-2916.1989.tb05971.x
  33. Stolen S, Grande T. Chemical thermodynamics of materials: macroscopic and microscopic aspects. Hoboken: John Wiley and Sons; 2004.
  34. Duffy JA, Ingram MD. Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses. J. Am. Ceram. Soc. 1971;93:6448-6454.
  35. Smith W. An acidity scale for binary oxides. J. Chem. Educ. 1987;64:480-481. https://doi.org/10.1021/ed064p480
  36. Portier J, Poizot P, Campet G, Subramanian MA, Tarascon JM. Acid-base behavior of oxides and their electronic structure. Solid State Sci. 2003;5:695-699. https://doi.org/10.1016/S1293-2558(03)00031-1
  37. Baerns M, Holena M. Combinatorial development of solid catalytic materials: design of high-throughput experiments, data analysis, data mining. London: Imperial College Press; 2009.
  38. Jain AK, Mao J, Mohiuddin KM. Artificial neural networks: a tutorial. IEEE Computer 1996;29:31-44.
  39. Buhmann MD. Radial basis functions: theory and implementations. New York: Cambridge University Press; 2003.
  40. Hassoun MH. Fundamentals of artificial neural networks. Cambridge: MIT Press; 1995.
  41. Sridhar DV, Seagrave RC, Bartlett EB. Process modeling using stacked neural networks. AlChE J. 1996;42:2529-2539. https://doi.org/10.1002/aic.690420913
  42. Tompos A, Margitfalvi JL, Tfirst E, Vegvari L. Information mining using artificial neural networks and "holographic research strategy". Appl. Catal. A 2003;254:161-168. https://doi.org/10.1016/S0926-860X(03)00285-0
  43. Burden FR. Mapping analytic functions using neural networks. J. Chem. Inf. Comput. Sci. 1994;34:1229-1231. https://doi.org/10.1021/ci00022a001
  44. Sha W, Edwards KL. The use of artificial neural networks in materials science based research. Mater. Des. 2007;28:1747-1752. https://doi.org/10.1016/j.matdes.2007.02.009
  45. Dash S, Singh Z, Parida SC, Venugopal V. Thermodynamic studies on $Rb_2ThO_3$(s). J. Alloys Compd. 2005;398:219-227. https://doi.org/10.1016/j.jallcom.2005.02.007
  46. Diaconescu R, Dumitriu E. Applications of artificial neural networks in environmental catalysis. Environ. Eng. Manag. J. 2005;4:473-498.
  47. Rothenberg G. Data mining in catalysis: separating knowledge from garbage. Catal. Today 2008;137:2-10. https://doi.org/10.1016/j.cattod.2008.02.014
  48. Hecht-Nielsen R. Replicator neural networks for universal optimal source coding. Science 1995;269:1860-1863. https://doi.org/10.1126/science.269.5232.1860
  49. Sontag ED. Feed forward nets for interpolation and classification. J. Comput. Sys. Sci. 1992;45:20-48. https://doi.org/10.1016/0022-0000(92)90039-L
  50. Morss LR, Konings RJM. Thermochemistry of binary rare earth oxides. Dordrecht: Kluwer Academic Publishers, 2006.
  51. Available from: http://www.alibaba.com.

피인용 문헌

  1. Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite vol.31, pp.8, 2014, https://doi.org/10.1007/s11814-014-0074-7
  2. Diluents Role in Extraction and Possible Separation of Light Rare Earth Elements from Chloride Solutions by using Cyanex® 272 used as an Extractant vol.56, pp.10, 2018, https://doi.org/10.3365/KJMM.2018.56.10.763
  3. LaMnO3/RGO/PANI Ternary Nanocomposites for Supercapacitor Electrode Application and Their Outstanding Performance in All-Solid-State Asymmetrical Device Design vol.1, pp.6, 2013, https://doi.org/10.1021/acsaem.8b00459
  4. The Formation of Perovskite during the Combustion of an Energy-Rich Glycine–Nitrate Precursor vol.13, pp.22, 2020, https://doi.org/10.3390/ma13225091
  5. Separation of Radioactive Elements from Rare Earth Element-Bearing Minerals vol.10, pp.11, 2013, https://doi.org/10.3390/met10111524
  6. Research Progress in Rare Earth-Doped Perovskite Manganite Oxide Nanostructures vol.15, pp.1, 2013, https://doi.org/10.1186/s11671-019-3243-0