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GENERALIZED DERIVATIONS AND DERIVATIONS

OF RINGS AND BANACH ALGEBRAS

Yong-Soo Jung

Abstract. We investigate anti-centralizing and skew-centralizing
mappings involving generalized derivations and derivations on prime
and semiprime rings. We also obtain some range inclusion results
for generalized linear derivations and linear derivations on Banach
algebras by applying the algebraic techniques. Some results in this
note are to improve the ones in [22].

1. Introduction

Throughout, R will represent an associative ring. The commutator
xy − yx will be denoted by [x, y] and the anti-commutator xy + yx
by 〈x, y〉. Let us Z(R) be the center of R and N(R) = {x ∈ R :
〈x, y〉 = 0 for all y ∈ R}. For xi, y ∈ R, i = 1, 2, · · · ,m, we define
the (m + 1)-tuple 〈y, x1, · · · , xm〉 as follows: 〈y, x1〉 := yx1 + x1y and
〈y, x1, · · · , xm−1, xm〉 := 〈〈y, x1, · · · , xm−1〉, xm〉. In particular, in the
case x1 = x2 = · · · = xm = x, 〈y, x〉m will stand for the (m + 1)-
tuple 〈y, x, · · · , x〉 and let 〈y, x〉0 = y. The relation ∆i(y, x, e) stands
for the tuple 〈y, x1, · · · , xm〉 such that xi = x and xj = e for all j 6= i
and all xi, y ∈ R, where i, j = 1, 2, · · · ,m. We often make use of the
following basic properties: for any x, y, z ∈ R, [xy, z] = x[y, z] + [x, z]y,
[x, yz] = [x, y]z + y[x, z] and [〈y, x〉, x] = 〈[y, x], x〉.

A mapping f : R→ R is said to be commuting on R if [f(x), x] = 0 for
all x ∈ R. Similarly f is called skew-commuting (resp. skew-centralizing)
on R if 〈f(x), x〉 = 0 (resp. 〈f(x), x〉 ∈ Z(R)) for all x ∈ R. By analogy
with the definition of n-commutativity introduced in [7], for convenience’
sake, for n ≥ 2, a mapping f : R → R will be called n-anti-centralizing
on R if 〈f(x), xn〉 ∈ N(R) for all x ∈ R. An 1-anti-centralizing is
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simply an anti-centralizing. We define a mapping f : R → R to be n-
skew-commuting (resp. n-skew-centralizing) on R if 〈f(x), xn〉 = 0 (resp.
〈f(x), xn〉 ∈ Z(R)) for all x ∈ R. An 1-skew-commuting mapping (resp.
1-skew-centralizing) is called simply a skew-commuting mapping (resp.
skew-centralizing).

The study of (skew-)centralizing and (skew-)commuting mappings
was initiated by a well-known theorem of Posner [13] which states that
the existence of a nonzero centralizing derivation on a prime ring implies
that the ring is commutative. This theorem has been extended by several
authors in different ways ([21], [22], etc).

An additive mapping µ : R → R is called a left (resp. right) central-
izer (or multiplier) if µ(xy) = µ(x)y (resp. µ(xy) = xµ(y)) holds for all
x, y ∈ R. An additive mapping δ : R → R is called a derivation if the
Leibniz rule δ(xy) = δ(x)y + xδ(y) holds for all x, y ∈ R.

In [3], M. Brešar defined the following concept. Let δ : R → R be
a derivation. An additive mapping f : R → R is called a generalized
derivation associated with δ if f(xy) = f(x)y+xδ(y) holds for all x, y ∈
R. This notion is a generalization of both derivations and centralizers.
Other properties of generalized derivations were given by B. Hvala [9]
and M. A. Quadri et al. [14].

For example, let a, b ∈ R be such that one of them is not zero. Define
a mapping f : R → R by f(x) = ax + xb for all x ∈ R. Then for all
x, y ∈ R, we have f(x+ y) = f(x) + f(y) and

f(xy) = axy + xyb

= (ax+ xb)y + x(−by − y(−b))
= f(x)y + xδ(y),

where δ is an inner derivation on R induced by the element b. That is,
f is a generalized derivation on R.

In this note, we investigate anti-centralizing and skew-centralizing
mappings involving generalized derivations and derivations on prime
rings, semiprime rings and Banach algebras, and some results are to
improve the ones in [22].

2. Generalized Derivations and Derivations of Prime and
Semiprime Rings

To obtain our main results in this section, we need the following basic
facts: let R be a semiprime ring and U the left Utumi quotient ring of
R. Then U can be characterized as a ring satisfying the next properties:
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(1) R is a subring of U .
(2) For each u ∈ U , there exists a dense left ideal Iu of R such that

Iuu ⊆ R.
(3) If u ∈ U and Iu = 0 for some dense left ideal I of R, then u = 0.
(4) If ϕ : I → R is a left R-module mapping from a dense left ideal I of

R into R, then there exists an element u ∈ U such that ϕ(x) = xu
for all x ∈ I.

Up to isomorphisms, U is uniquely determined by the above four
properties. If R is a (semi-)prime ring, then U is also a (semi-)prime
ring. U always has the identity element e. The center of U is called
the extended centroid of R. The set of all idempotents in the extended
centroid of R is denoted by E. The element of E is called a central
idempotent.

A mapping Λ : R×R→ R is said to be symmetric if Λ(x, y) = Λ(y, x)
for all x, y ∈ R. A mapping λ : R→ R defined by λ(x) = Λ(x, x) for all
x, y ∈ R, where Λ : R × R → R is a symmetric mapping, is called the
trace of Λ. It is obvious that, in case when Λ : R×R→ R is a symmetric
mapping which is also bi-additive (i.e., additive in both arguments), the
trace λ of Λ satisfies the relation

(2.1) λ(x+ y) = λ(x) + λ(y) + 2Λ(x, y)

for all x, y ∈ R.

We precede the following lemmas to prove the main results.

Lemma 2.1 ([5]). Let n be a fixed positive integer and R a n!-torsion
free ring. Suppose that y1, y2, · · · , yn ∈ R satisfy ty1 +t2y2 + · · ·+tnyn =
0 for t = 1, 2, · · · , n. Then yi = 0 for all i.

Lemma 2.2. Let m ≥ 0 and n ≥ 1. Let R be a (m+n+ 1)!-torsion-
free ring with identity. Let Λ : R × R → R be a symmetric bi-additive
mapping and λ the trace of Λ. If the mapping x 7→ 〈λ(x), x〉m is n-skew-
commuting on R, then we have λ = 0 on R.

Proof. Since R has the identity element e, it follows from (2.1) that
λ(0) = 0 and so λ(e) = 0. Suppose that

(2.2) 〈〈λ(x), x〉m, xn〉 = 0

for all x ∈ R.
Let t be any positive integer. Replacing x by x + te in (2.2) and

considering λ(x+ te) = λ(x) + t2λ(e) + 2tΛ(x, e) = λ(x) + 2tΛ(x, e) for
all x ∈ R, we obtain

tP1(x, e) + t2P2(x, e) + · · ·+ tm+n+1Pm+n+1(x, e) = 0
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for all x ∈ R, where Pk(x, e) is the sum of terms involving x and e such
that Pk(x, te) = tkPk(x, e), k = 1, 2, · · · ,m+ n+ 1. By Lemma 2.1, we
see that for each k = 1, 2, · · · ,m+ n+ 1,

Pk(x, e) = 0

for all x ∈ R.
By utilizing λ(e) = 0 and en = e, we have, in particular,

(2.3) 0 = Pm+n+1(x, e) = 2∆m+1(Λ(x, e), e, e)

and

0 = Pm+n(x, e)

= 2∆m+1(λ(x), e, e) +
m∑
i=1

2∆i(Λ(x, e), x, e)(2.4)

+ 2n∆m+1(Λ(x, e), x, e)

for all x ∈ R. By inspecting (2.3), we arrive at 2m+2Λ(x, e) = 0 = Λ(x, e)
for all x ∈ R. This forces (2.4) to

(2.5) ∆m+1(λ(x), e, e) = 〈λ(x),

mtimes︷ ︸︸ ︷
e, · · · , e 〉 = 0

for all x ∈ R. Calculating (2.5), we get

2m+1λ(x) = 0 = λ(x)

for all x ∈ R which is the conclusion of the lemma.

Now we are ready to prove our main results. First, we prove the
following result which is a generalization of [22, Theorem 3.1].

Theorem 2.3. Let m ≥ 0 and n ≥ 1. Let R be a (m+n+1)!-torsion-
free prime ring. If there exist generalized derivations d, g : R→ R such
that the mapping x 7→ 〈d2(x) + g(x), x〉m is n-anti-centralizing on R,
then d and g are either left centralizers or right centralizers.

Proof. Let us write h instead of d2 + g. We define a mapping Λ :
R×R→ R by

Λ(x, y) = 〈h(x), y〉+ 〈h(y), x〉
for all x, y ∈ R. Then it is clear that Λ is a symmetric bi-additive
mapping and the mapping λ : R → R defined by λ(x) = Λ(x, x) =
2〈h(x), x〉 for all x, y ∈ R, is the trace of Λ.

Since it follows from the hypothesis that 〈〈h(x), x〉m, xn〉 ∈ N(R) is
valid for all x ∈ R, we have

〈〈h(x), x〉mxn + xn〈h(x), x〉m, x〉 = 0
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for all x ∈ R which reduces to 〈〈h(x), x〉m, x〉xn + xn〈〈h(x), x〉m, x〉 = 0
for all x ∈ R. This implies that 〈h(x), x〉m+1x

n + xn〈h(x), x〉m+1 = 0
for all x ∈ R, that is, 〈λ(x), x〉mxn +xn〈λ(x), x〉m = 0 for all x ∈ R.
Note that R and U satisfy the same differential identities [10, Theorem
2] and so satisfy the same generalized differential identities. Hence we
see that

〈λ(x), x〉mxn + xn〈λ(x), x〉m = 0

for all x ∈ U . From Lemma 2.2, it follows that λ = 0 on R, that is,
h = d2 + g is skew-commuting on U . Applying [2, Theorem 2] yields

(2.6) d2(x) + g(x) = 0

for all x ∈ U since U is prime and so is semiprime. The equation (2.6)
means that d2 is a generalized derivation on U and hence

(2.7) d2(xy) = d2(x)y + xδ(y)

for all x, y ∈ U , where δ is the associated derivation of d2.
On the other hand, we see that

(2.8) d2(xy) = d(d(x)y + xτ(y)) = d2(x)y + 2d(x)τ(y) + xτ2(y)

for all x, y ∈ U , where τ is the associated derivation of d. From (2.7)
and (2.8), we obtain

(2.9) xδ(y) = 2d(x)τ(y) + xτ2(y)

for all x, y ∈ U . Putting x = e in (2.9), we get

(2.10) δ(y) = 2d(e)τ(y) + τ2(y)

for all y ∈ U . The substitution yx for y in (2.10) gives

δ(y)x+ yδ(x) = 2d(e)τ(y)x+ 2d(e)yτ(x)(2.11)

+ τ2(y)x+ 2τ(y)τ(x) + yτ2(x)

for all x, y ∈ U . Right multiplication of (2.10) by x leads to

(2.12) δ(y)x = 2d(e)τ(y)x+ τ2(y)x

for all x, y ∈ U . Subtracting (2.12) from (2.11), we have

(2.13) yδ(x) = 2d(e)yτ(x) + 2τ(y)τ(x) + yτ2(x)

for all x, y ∈ U . Combining (2.13) with (2.10), we deduce that{
[d(e), y] + τ(y)

}
τ(x) = 0

for all x, y ∈ U . From [13, Lemma 1], it follows that

τ(x) = 0 or τ(y) = [y, d(e)]
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for all x, y ∈ U since R is prime. In case τ = 0 on U , relations (2.8)
and (2.6) tell us that d, d2 and g are all left centralizers. In case τ(y) =
[y, d(e)] for all y ∈ U , we obtain

d(y) = d(ey) = d(e)y + τ(y) = yd(e)

for all y ∈ U . Now it is immediate that d, d2 and g are all right central-
izers. This completes the proof.

Since the same method as in the proof of Theorem 2.3 with d = 0
leads to the relation (2.6), i.e., g = 0 on R, we obtain the following
result.

Theorem 2.4. Let m ≥ 0 and n ≥ 1. Let R be a (m+n+1)!-torsion-
free semiprime ring. If there exists a generalized derivation g : R → R
such that the mapping x 7→ 〈g(x), x〉m is n-anti-centralizing on R, then
we have g = 0 on R.

Theorem 2.5. Let m ≥ 0 and n ≥ 1. Let R be a (m + n + 1)!-
torsion-free semiprime ring. If there exist derivations d, g : R→ R such
that the mapping x 7→ 〈d2(x) + g(x), x〉m is n-anti-centralizing on R,
then we have d = g = 0 on R.

Proof. In view of the same process as in the proof of Theorem 2.3, the
relation (2.6) yields that d2 is a derivation on R. From [13], it follows
that d = 0 on R and so the relation (2.6) gives g = 0 on R, i.e., d = g = 0
on R.

Remark 1. Theorems 2.4 and 2.5 are to improve Corollaries 3.2 and

3.3 of [22], respectively.

We continue the next result.

Theorem 2.6. Let m ≥ 0 and n ≥ 1. Let R be a (m+n+1)!-torsion-
free noncommutative prime ring. If there exist derivations d, g : R→ R
such that the mapping x 7→ 〈d2(x) + g(x), x〉m is n-skew-centralizing on
R, then we have d = g = 0 on R.

Proof. Set h = d2 + g as in the proof of Theorem 2.2. Defining a
mapping Λ : R×R→ R by

Λ(x, y) = [h(x), y] + [h(y), x]

for all x, y ∈ R, it is obvious that Λ is a symmetric bi-additive mapping
and the mapping λ : R → R defined by λ(x) = Λ(x, x) = 2[h(x), x] for
all x, y ∈ R, is the trace of Λ.
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From the hypothesis 〈〈h(x), x〉m, xn〉 ∈ Z(R) for all x ∈ R, we get,
by recalling [〈y, x〉, x] = 〈[y, x], x〉,

[〈h(x), x〉mxn + xn〈h(x), x〉m, x] = 0

for all x ∈ R which implies that [〈h(x), x〉m, x]xn +xn[〈h(x), x〉m, x] = 0
for all x ∈ R. This reduces to 〈[h(x), x], x〉mxn + xn〈[h(x), x], x〉m = 0
for all x ∈ R, that is, 〈λ(x), x〉mxn +xn〈λ(x), x〉m = 0 for all x ∈ R.
Again, using the fact that R and U satisfy the same differential identities
and so satisfy the same generalized differential identities, we obtain, by
Lemma 2.2, λ(x) = 0 for all x ∈ U which means that h = d2 + g is
commuting on R, namely,

(2.14) [h(x), x] = 0

for all x ∈ R. We claim that d = g = 0 on R.
To show the claim, the arguments used in the proof of [4, Theorem 1]

carry over almost verbatim, but we will proceed the proof for the sake
of completeness. The linearization of the relation (2.14) gives

(2.15) [h(x), y] + [h(y), x] = 0

for all x, y ∈ R. Putting xy for y in (2.15), we obtain

(2.16) h(x)[y, x] + x[h(y), x] + 2[d(x)d(y), x] + x[h(x), y] = 0

for all x, y ∈ R. From (2.15), the relation (2.16) reduces to

(2.17) h(x)[y, x] + 2[d(x)d(y), x] = 0

for all x, y ∈ R. In (2.17), we replace y by yx to obtain

(2.18) h(x)[y, x]x+ 2[d(x)d(y), x]x+ 2[d(x)yd(x), x] = 0

for all x, y ∈ R. By (2.17), the relation (2.18) becomes

(2.19) d(x)yd(x)x− xd(x)yd(x) = 0

for all x, y ∈ R. Substituting yd(x)z for y in (2.19) yields

(2.20) d(x)yd(x)zd(x)x− xd(x)yd(x)zd(x) = 0

for all x, y, z ∈ R. According to (2.19), we can write, in relation (2.20),
xd(x)zd(x) for d(x)zd(x)x and d(x)yd(x)x instead of xd(x)yd(x), which
gives

d(x)y[d(x), x]zd(x) = 0

for all x, y, z ∈ R. From the primness of R, it follows that, for all x ∈ R,
we have either [d(x), x] = 0 or d(x) = 0. In any case [d(x), x] = 0 for all
x ∈ R. Posner’s theorem guarantees that d = 0 on R. Now the initial
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hypothesis yields that [g(x), x] = 0 for all x ∈ R so g = 0 on R. This
completes the proof of the theorem.

We apply the orthogonal completeness method to extend Theorem
2.6 to the case of semiprime rings.

Theorem 2.7. Let m ≥ 0 and n ≥ 1. Let R be a (m + n + 1)!-
torsion-free noncommutative semiprime ring. If there exist derivations
d, g : R → R such that the mapping x 7→ 〈d2(x) + g(x), x〉m is n-skew-
centralizing on R, then both d and g map R into Z(R).

Proof. Let B be the complete Boolean algebra of E. We choose a
maximal ideal M of B. According to [1], MU is a prime ideal of U ,
which is invariant under any derivation of U . It was well-known that
any derivation on R can be uniquely extended to a derivation on U . Let
d̄ and ḡ be derivations on Ū = U/MU induced by d and g, respectively.
Since R and U satisfy the same differential identities, the hypothesis
implies that

〈〈d2(x) + g(x), x〉m, xn〉 ∈ Z(U)

for all x ∈ U . Hence this yields that

〈〈d̄2(x̄) + ḡ(x̄), x̄〉m, x̄n〉 ∈ Z(Ū)

for all x̄ ∈ Ū . By Theorem 2.6, we see that either d̄ = ḡ = 0 on Ū or
[Ū , Ū ] = 0. In any case we have

d(U)[U,U ] ∈MU

and

g(U)[U,U ] ∈MU

for all M . We observe that
⋂
{MU : M is any maximal ideal of B} =

{0}. Thus we obtain d(U)[U,U ] = 0 and g(U)[U,U ] = 0. In particular,
we get d(R)[R,R] = 0 and g(R)[R,R] = 0 which imply that

0 = d(R)[R2, R] = d(R)R[R,R] + d(R)[R,R]R = d(R)R[R,R]

and

0 = g(R)[R2, R] = g(R)R[R,R] + g(R)[R,R]R = g(R)R[R,R].

Hence we obtain [R, d(R)]R[R, d(R)] = 0 and [R, g(R)]R[R, g(R)] =
0. From the semiprimness of R, it follows that [R, d(R)] = 0 and
[R, g(R)] = 0 which give the conclusion of the theorem.

Remark 2. Theorems 2.6 and 2.7 are to improve Theorems 3.4 and 3.5

of [22], respectively.
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3. Applications to Banach Algebras

In 1955 I.M. Singer and J. Wermer [18] proved that a continuous
linear derivation on a commutative Banach algebra maps the algebra
into its Jacobson radical. I.M. Singer and J. Wermer conjectured in
[18] that the continuity assumption in their result is superfluous. It
took more than thirty years until this conjecture was finally proved by
Thomas [19].

In this section we investigate the ranges of generalized linear deriva-
tions and linear derivations on complex Banach algebras to discuss some
problems which are related to the well-known noncommutative Singer-
Wermer conjecture from the point of view of ring theory.

Let A be a Banach algebra. The Jacobson radical (resp. the nil
radical) of A will be denoted by rad(A) (resp. nil(A)). Note that
rad(A) (resp. nil(A)) is the intersection of all primitive ideals (resp.
all prime ideals) of A. A is said to be semisimple (resp. semiprime) if
rad(A) = {0} (resp. nil(A) = {0}). For a linear mapping f : A → A,
the set

S(f)={y ∈ A : there is a sequence (xn) in A with xn → 0 and f(xn)→ y}

is said to be the separating space of f . By the Closed Graph Theorem,
f is continuous if and only if S(f) = {0} ([17, Lemma 1.2]).

Let I be a closed ideal of A. πI will denote the canonical quotient
map from A onto A/I. Here, Banach algebras will be over the complex
field.

Our first result in this section is about continuous generalized deriva-
tions on Banach algebras.

Theorem 3.1. Let m ≥ 0 and n ≥ 1. Let A be a unital Banach
algebra. If there exists a continuous generalized linear derivation g :
A → A such that the mapping x 7→ 〈g(x), x〉m is n-anti-centralizing on
A, then g maps A into rad(A).

Proof. Let Q be any primitive ideal of A. From [11, Theorem 3], it
follows that g = La + δ, where La (a ∈ A) is a left multiplication and
δ is a derivation on A. Under the hypothesis that g is continuous, it is
well known that the left multiplication is also continuous, hence we have
that the derivation δ is continuous. In [16], Sinclair proved that any
continuous linear derivation on Banach algebras leaves each primitive
ideal invariant. Therefore, we see that g(Q) = aQ+ δ(Q) ⊆ Q, that is,
also the continuous generalized derivation g leaves each primitive ideal
invariant. Then the generalized derivation g induces the generalized
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derivation ḡ on the semiprime Banach algebra A/Q, defined by ḡ(x̄) =
g(x) + Q for all x̄ = x + Q ∈ A/Q and x ∈ A. Since the assumption
that the mapping x 7→ 〈g(x), x〉m is n-anti-centralizing on A implies
that x̄ 7→ 〈ḡ(x̄), x̄〉m is n-anti-centralizing on A/Q, Theorem 2.4 gives
ḡ = 0 on A/Q in either case A/Q is commutative or noncommutative.
Therefore we have g(A) ⊆ rad(A) since Q is arbitrary.

Lemma 3.2 ([17]). Let A be a Banach algebra and d : A→ A be a
linear derivation. If P is a minimal prime ideal of A such that S(d) 6⊂ P ,
then P is closed.

Lemma 3.3 ([20]). Let d be a linear derivation on a Banach algebra
A and Q a primitive ideal of A. If there exists a constant C > 0 such
that ‖πQ ◦ dn‖ ≤ Cn for all n ∈ N , then we have d(Q) ⊆ Q.

Now we may prove the following:

Theorem 3.4. Let m ≥ 0 and n ≥ 1. Let A be a Banach algebra.
If there exist linear derivations d, g : A → A such that the mapping
x 7→ 〈d2(x) + g(x), x〉m is n-skew-centralizing on A, then both d and g
map A into rad(A).

Proof. LetQ be any primitive ideal of A. Using Zorn’s lemma, we find
a minimal prime ideal P contained inQ, and hence d(P ) ⊆ P and g(P ) ⊆
P by [12, Lemma 1]. Suppose first that P is closed. Then we can define
derivation d̄, ḡ : A/P → A/P by d̄(x̄) = d(x) + P and ḡ(x̄) = g(x) + P ,
respectively, for all x ∈ A. If A/P is commutative, then both d̄(A/P )
and ḡ(A/P ) are contained in rad(A/P ) by [18]. Hence d̄(A/P ) ⊆ Q/P
and ḡ(A/P ) ⊆ Q/P . Consequently we see that d(A) ⊆ Q and g(A) ⊆ Q.
We consider the case when A/P is noncommutative. The assumption
that the mapping x 7→ 〈d2(x) + g(x), x〉m is n-skew-centralizing on A
leads to the fact that the mapping x 7→ 〈d̄2(x̄) + ḡ(x̄), x̄〉m is n-skew-
centralizing on A/P . Since A/P is prime, it follows from Theorem 2.6
that both d̄ = 0 and ḡ = 0 on A/P . Consequently, we see that both
d(A) ⊆ Q and g(A) ⊆ Q.

If P is not closed, then we see that S(d) ⊆ P by Lemma 3.2. Denoting
πP̄ : A → A/P̄ the canonical epimorphism, we have, by [17, Lemma

1.3] S(πP̄ ◦ d) = πP̄ (S(d)) = {0} whence πP̄ ◦ d is continuous. So
(πP̄ ◦ d)(P̄ ) = {0}, that is, d(P̄ ) ⊆ P̄ . Hence we can also define a

continuous derivation d̃ : A/P̄ → A/P̄ by d̃(x̃) = d(x) + P̄ for all x ∈ A.
This shows that we may also define a mapping

Φ ◦ d̃n ◦ πP̄ : A→ A/P̄ → A/P̄ → A/Q
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by (φP̄ ◦ d̃n◦πP̄ )(x) = (πQ◦dn)(x) for all x ∈ A, where φ is the canonical
inclusion mapping from A/P̄ onto A/Q (which exists since P̄ ⊆ Q). We

therefore conclude that ‖πQ ◦ dn‖ ≤ ‖d̃‖n for all n ∈ N, since the other

mappings are norm depressing. From Lemma 1.4, the continuity of d̃ is

clear and so yields that ‖πQdn‖ ≤ ‖d̃‖n for all n ∈ N. Now, according
to Lemma 3.2, we obtain that d(Q) ⊆ Q. Following the same argument
with g, we see that g(Q) ⊆ Q. Then the derivations d and g on A

induce the derivations d̂ and ĝ on the Banach algebra A/Q, defined by

d̂(x̂) = d(x) +Q and d̂(x̂) = d(x) +Q for all x ∈ A. The rest follows as
when P is closed since the primitive algebra A/Q is prime. Thus we also
obtain that d(A) ⊆ Q and g(A) ⊆ Q. Since Q is arbitrary, we arrive at
the conclusion that d(A) ⊆ rad(A) and g(A) ⊆ rad(A).

Corollary 3.5. Let m ≥ 0 and n ≥ 1. Let A be a semisimple
Banach algebra. If there exist linear derivations d, g : A→ A such that
the mapping x 7→ 〈d2(x) + g(x), x〉m is n-skew-centralizing on A, then
we have d = g = 0 on A.

Our final results are related to the so-called automatic continuity for
derivations on Banach algebras.

Theorem 3.6. Let m ≥ 0 and n ≥ 1. Let A be a Banach algebra
such that every prime ideal is closed. If there exist linear derivations
d, g : A → A such that the mapping x 7→ 〈d2(x) + g(x), x〉m is n-skew-
centralizing on A, then both S(d) and S(g) are contained in nil(A).

Proof. Note that d(nil(A)) ⊆ nil(A) and g(nil(A)) ⊆ nil(A) by [6,
Lemma 4.1]. Since every prime ideal of A is closed, the nilradical nil(A)
is closed. Then the derivations d and g on A induce the derivations d̄
and ḡ on the Banach algebra A/nil(A), defined by d̄(x̄) = d(x) +nil(A)
and ḡ(x̄) = g(x) + nil(A) for all x ∈ A. If A/nil(A) is commutative,
then d̄ and ḡ are continuous by [8, Theorem 3.2]. Thus [17, Lemma
1.4] yields that S(d) ⊆ nil(A) and S(g) ⊆ nil(A). In case A/nil(A) is
noncommutative, the hypothesis of the theorem means that the map-
ping x 7→ 〈d̄2(x̄) + ḡ(x̄), x̄〉m is n-skew-centralizing on A/nil(A). Since
A/nil(A) is prime, it follows from Theorem 2.6 that both d̄ = 0 and ḡ = 0
on A/nil(A). Hence we see that both d(A) ⊆ nil(A) and g(A) ⊆ nil(A).
Therefore we have S(d) ⊆ nil(A) and S(g) ⊆ nil(A) since S(d) and S(g)

are contained in the closure d(A) of d(A). The proof of the theorem is
complete.

Corollary 3.7. Let m ≥ 0 and n ≥ 1. Let A be a semiprime
Banach algebra such that every prime ideal is closed. If there exist linear
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derivations d, g : A→ A such that the mapping x 7→ 〈d2(x) + g(x), x〉m
is n-skew-centralizing on A, then both d and g are continuous on A.

Remark 3 ([15]). Let A =
{
a =

∑∞
n=0 anx

n : ‖a‖ =
∑∞

n=0 |an|wn <

∞
}

in one indeterminant x with complex coefficients where {wn : n =
0, 1, 2, · · · } is a sequence in (0,∞) such that w0 = 1, wn+m ≤ wnwm

and limn→∞(wn)
1
n = 0. Then A is a Banach algebra of power series.

Furthermore, A has a unique maximal ideal M =
{∑∞

n=0 anx
n : a0 =

0
}

. If {wn} is chosen properly, then the only prime ideals of A are {0}
and A. Hence every prime ideal in A is closed.
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