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CERTAIN INTEGRAL REPRESENTATIONS FOR THE

RIEMANN ZETA FUNCTION ζ(s) AT POSITIVE

INTEGER ARGUMENT

Junesang Choi

Abstract. We aim at presenting certain integral representations
for the Riemann Zeta function ζ(s) at positive integer arguments
by using some known integral representations of log Γ(1 + z) and
ψ(1 + z).

1. Introduction and Preliminaries

The Riemann Zeta function ζ(s) is defined by (see, e.g., [4, Section
2.3])

(1.1) ζ(s) :=



∞∑
n=1

1

ns
=

1

1− 2−s

∞∑
n=1

1

(2n− 1)s
(<(s) > 1)

1

1− 21−s

∞∑
n=1

(−1)n−1

ns
(<(s) > 0; s 6= 1),

which is an obvious special case of the Hurwitz (or generalized) Zeta
function ζ(s, a) defined by

(1.2) ζ(s, a) :=

∞∑
k=0

(k + a)−s
(
<(s) > 1; a ∈ C \ Z−0

)
,

where C and Z−0 denote the sets of complex numbers and nonpositive
integers, respectively. Both the Riemann zeta function ζ(s) and the
Hurwitz zeta function ζ(s, a) can be continued meromorphically to the
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whole complex s-plane, except for a simple pole only at s = 1 with their
respective residue 1, in many different ways.

The Gamma function Γ(z) developed by Leonhard Euler (1707-1783)
is usually defined by

(1.3) Γ(z) =

∞∫
0

e−t tz−1 (<(z) > 0).

Among several equivalent forms of the Gamma function Γ(z), we choose
to recall its canonical product form due to Karl Weierstrass (1815-1897):

(1.4) Γ(z) =
e−γz

z

∞∏
k=1

{(
1 +

z

k

)−1
ez/k

} (
z ∈ C \ Z−0

)
,

where γ denotes the Euler-Mascheroni constant defined by

(1.5) γ := lim
n→∞

(
n∑

k=1

1

k
− log n

)
∼= 0.57721 56649 01532 86060 6512 · · · .

We also recall the Polygamma functions ψ(n)(s) (n ∈ N := {1, 2, 3, . . .})
defined by

(1.6)
ψ(n)(s) :=

dn+1

dzn+1
log Γ(s) =

dn

dsn
ψ(s)(

n ∈ N0 := N ∪ {0}; s ∈ C \ Z−0
)
,

where ψ(s) denotes the Psi (or Digamma) function defined by

(1.7) ψ(s) :=
d

ds
log Γ(s) and ψ(0)(s) = ψ(s)

(
s ∈ C \ Z−0

)
.

A well-known (and potentially useful) relationship between the Poly-

gamma functions ψ(n)(s) and the generalized Zeta function ζ(s, a) is
given by

(1.8)
ψ(n)(s) = (−1)n+1 n!

∞∑
k=0

1

(k + s)n+1
= (−1)n+1 n! ζ(n+ 1, s)(

n ∈ N; s ∈ C \ Z−0
)
.

In particular, we have

(1.9) ψ(n)(1) = (−1)n+1 n! ζ(n+ 1) (n ∈ N) .
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Since log Γ(1 + z) is analytic at z = 0, we have the Maclaurin series
expansion of log Γ(1 + z) in the following form:

(1.10) log Γ(1 + z) =

∞∑
n=0

an z
n (|z| < 1),

where

(1.11) an =
1

n!

dn

dzn
(log Γ(1 + z))

∣∣∣∣
z=0

(n ∈ N0) .

From (1.9), we find explicit expressions of an:

(1.12) a0 = 0, a1 = −γ, and an = (−1)n
ζ(n)

n!
(n ∈ N \ {1}) .

Differentiating both sides of (1.10), we obtain the Maclaurin series ex-
pansion of ψ(1 + z):

(1.13) ψ(1 + z) =
∞∑
n=0

bn z
n (|z| < 1),

where, in view of (1.9), we have

(1.14)

b0 = −γ and

bn =
1

n!
ψn(1 + z)

∣∣∣∣
z=0

= (−1)n+1 ζ(n+ 1) (n ∈ N) .

Here, in this paper, we aim at presenting certain integral representa-
tions for the Riemann Zeta function ζ(s) at positive integer arguments
by using both some known integral representations of log Γ(1 + z) and
ψ(1 + z) and the relation (1.14).

2. Known representations and Faà di Bruno formula

For our purpose, here, we recall some known integral presentations
of log Γ(1 + z) and ψ(1 + z), and Faà di Bruno formula for the nth
derivative of a composite function (see, e.g., [3, p. 44, Problem 2.1.38])
in the following lemmas.

Lemma 1. Each of the following integral formulas holds true:

(2.1)

log Γ(1 + z) =

(
z +

1

2

)
log(z + 1)− z − 1 +

1

2
log (2π)

+ 2

∫ ∞
0

arctan
(

t
z+1

)
e2πt − 1

dt (<(z) > −1);
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(2.2) ψ(z+ 1) =

∫ ∞
0

[
t−1e−t−

(
1− e−t

)−1
e−t e−tz

]
dt (<(z) > −1);

(2.3) ψ(z + 1) =

∫ ∞
0

[
e−t − (1 + t)−z−1

]
t−1 dt (<(z) > −1);

(2.4)
ψ(z + 1) = log(z + 1) +

∫ ∞
0

[
t−1 −

(
1− e−t

)−1]
e−t e−tz dt

(<(z) > −1);

(2.5)

ψ(z + 1) = log(z + 1)− 1

2(z + 1)

−
∫ ∞
0

[(
1− e−t

)−1 − t−1 − 1

2

]
e−t e−tz (<(z) > −1);

(2.6)

ψ(z + 1) = log(z + 1)

+

∫ ∞
0

[(
1− e−t

)−1
+ t−1 − 1

]
e−t e−tz dt (<(z) > −1);

(2.7)

ψ(z + 1) = log(z + 1)− 1

2(z + 1)

−
∫ ∞
0

[(
et − 1

)−1 − t−1 +
1

2

]
e−t e−tz dt (<(z) > −1).

Lemma 2. Let I, J be open intervals and let f : J → R, g : I → J
be infinitely differentiable on J and I, respectively. Then Faà di Bruno
formula for the nth derivative of h = f ◦ g is given as follows:

(2.8)

h(n)(t) =
∑ n!

k1!k2! · · · kn!
f (k)(g(t))

(
g(1)(t)

1!

)k1 (
g(2)(t)

2!

)k2

· · ·

(
g(n)(t)

n!

)kn
,

where k = k1 + k2 + · · · + kn and the summation is taken over all k1,
k2, . . . , kn ∈ N0 such that k1 + 2 k2 + · · ·+ nkn = n.
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3. Integral representations for ζ(n+ 1) (n ∈ N)

Here we present some integral representations for ζ(n + 1) (n ∈ N),
for convenience, as in the following two theorems.

Theorem 1. The following integral formula holds true:

(3.1) ζ(n+ 1) =
1

2
+

1

n
+ 2 (−1)n

∞∫
0

t αn(t)

e2πt − 1
dt (n ∈ N),

where, for convenience,

(3.2) αn(t) :=
∑ (−1)k k!

k1! k2!

2k1

(1 + t2)k+1
,

k = k1 +k2 and summation being taken over all k1 and k2 (k1, k2 ∈ N0)
such that k1 + 2 k2 = n. The first several explicit formulas of (3.1) are
given here:

(3.3) ζ(2) =
3

2
+ 4

∞∫
0

t

(t2 + 1)2 (e2πt − 1)
dt;

(3.4) ζ(3) = 1− 2

∞∫
0

t
(
t2 − 3

)
(t2 + 1)3 (e2πt − 1)

dt;

(3.5) ζ(4) =
5

6
− 8

∞∫
0

t
(
t2 − 1

)
(t2 + 1)4 (e2πt − 1)

dt;

(3.6) ζ(5) =
3

4
+ 2

∞∫
0

t
(
t4 − 10 t2 + 5

)
(t2 + 1)5 (e2πt − 1)

dt.

Proof. Differentiating both sides of (2.1), we obtain a known integral
representation for ψ(z + 1):

(3.7)

ψ(z + 1) = log(z + 1)− 1

2(z + 1)

− 2

∞∫
0

t

{(z + 1)2 + t2} (e2πt − 1)
dt (<(z) > −1).
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Now differentiating both sides of (3.7) n times by using easily derivable
formulas:

(3.8)
dn

dzn
log(z + 1) =

(−1)n−1 (n− 1)!

(z + 1)n
(n ∈ N)

and

(3.9)
dn

dzn
1

z + 1
=

(−1)n n!

(z + 1)n+1
(n ∈ N0) ,

and the Faà di Bruno formula (2.8) by setting

f(z) =
1

z
and g(z, t) = (z + 1)2 + t2

under the integral sign, and putting z = 0 in the resulting identity, in
view of (1.13) and (1.14), we are led to (3.1).

Theorem 2. Each of the following integral formulas holds true:

(3.10) ζ(n+ 1) =
1

n!

∞∫
0

tn

et − 1
dt (n ∈ N) ;

(3.11) ζ(n+ 1) =
1

n!

∞∫
0

logn(1 + t)

t (1 + t)
dt (n ∈ N) ;

(3.12) ζ(n+ 1) =
1

n
− 1

n!

∞∫
0

[
t−1 −

(
1− e−t

)−1]
e−t tn dt (n ∈ N) ;

(3.13) ζ(n+1) =
1

n
+

1

2
+

1

n!

∞∫
0

[(
1− e−t

)−1 − t−1 − 1

2

]
e−t tn dt (n ∈ N) ;

(3.14) ζ(n+ 1) =
1

n
− 1

n!

∞∫
0

[(
1− e−t

)−1
+ t−1 − 1

]
e−t tn dt (n ∈ N) ;

(3.15) ζ(n+ 1) =
1

n
+

1

2
+

1

n!

∞∫
0

[(
et − 1

)−1 − t−1 +
1

2

]
e−t tn dt (n ∈ N) .
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Proof. Differentiating both sides of each of the formulas (2.2) to (2.7)
by using, if necessary, (3.8) and (3.9), in view of (1.13) and (1.14), we
can obtain our desired integral formulas (3.10) to (3.15).

Remark. Setting z = 0 in (3.7) and (2.2) to (2.7), and using the
relation

(3.16) ψ(1) = −γ,
we obtain known integral representations for the Euler-Mascheroni con-
stant γ (see, e.g., [1], [2], and [4, Section 1.2]). (2.1) is called Binet’s
second expression for log Γ(z). The integral formulas (2.2) and (2.3) are
due to Gauss and Dirichlet, respectively.
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