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CERTAIN UNIFIED INTEGRALS INVOLVING A

PRODUCT OF BESSEL FUNCTIONS OF THE FIRST

KIND

Junesang Choi∗ and Praveen Agarwal

Abstract. A remarkably large number of integrals involving a prod-
uct of certain combinations of Bessel functions of several kinds
as well as Bessel functions, themselves, have been investigated by
many authors. Motivated the works of both Garg and Mittal and
Ali, very recently, Choi and Agarwal gave two interesting unified
integrals involving the Bessel function of the first kind Jν(z). In
the present sequel to the aforementioned investigations and some
of the earlier works listed in the reference, we present two general-
ized integral formulas involving a product of Bessel functions of the
first kind, which are expressed in terms of the generalized Lauricella
series due to Srivastava and Daoust. Some interesting special cases
and (potential) usefulness of our main results are also considered
and remarked, respectively.

1. Introduction and preliminaries

The study of Bessel functions has a very long history (see, e.g., [10])
and now stands on fairly firm footing through the research contributions
of various authors (see, e.g., [2, 10, 11, 20, 21] and [22]). Bessel functions
are important special functions and their closely related ones are widely
used in physics and engineering; therefore, they are of interest to physi-
cists and engineers as well as mathematicians. So it looks natural that
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many research works on the further investigations of the Bessel functions
have recently come up. Numerous integral formulas involving a variety
of special functions have been developed by many authors (see, e.g., [5];
for a very recent work, see also [7]). Also many integral formulas as-
sociated with the Bessel functions of several kinds have been presented
(see, e.g., [5, 196-204]; see also [21, 373-476]). Those integrals involving
Bessel functions are not only of great interest to the pure mathematics,
but they are often of extreme importance in many branches of theoreti-
cal and applied physics and engineering. Several methods for evaluating
infinite integrals involving Bessel functions have been known (see, e.g.,
[1] and [12]). However, these methods usually work on a case-by-case
basis.

Motivated the works of both Garg and Mittal [9] and Ali [3], very
recently, Choi and Agarwal [6] gave two interesting unified integrals
involving the Bessel function of the first kind Jν(z) (1.1). In the present
sequel to the aforementioned investigations, we present two generalized
integral formulas involving a product of Bessel functions of the first
kind, which are expressed in terms of the generalized Lauricella series
(1.2) due to Srivastava and Daoust [17]. Some interesting special cases
and (potential) usefulness of our main results are also considered and
remarked, respectively.

For our purpose, we begin by recalling some known functions and
earlier works. The Bessel function of the first kind Jν(z) is defined for
z ∈ C \ {0} and ν ∈ C with <(ν) > −1 by the following series (see, e.g.,
[12, p. 217, Entry 10.2.2] and [21, p. 40, Eq. (8)]):

(1.1) Jν(z) =
∞∑
k=0

(−1)k
(
z
2

)ν+2k

k! Γ(ν + k + 1)
,

where C denotes the set of complex numbers and Γ(z) is the familiar
Gamma function (see, e.g., [16, Section 1.1]).

An interesting further several-variable-generalization of the general-
ized Lauricella series (see, e.g., [19, p. 36, Eq. (19)]) is defined by (cf.
Srivastava and Daoust [17, p. 454]; see also [19, p. 37])
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(1.2)

FA:B
(1);··· ;B(n)

C:D(1);··· ;D(n)

 z1
...
zn

 = FA:B
(1);··· ;B(n)

C:D(1);··· ;D(n)

(
[(a) : θ(1), . . . , θ(n)] :

[(c) : ψ(1), . . . , ψ(n)] :

[(b)(1) : φ(1)]; . . . ; [(b)(n) : φ(n)];

[(d)(1) : δ(1)]; . . . ; [(d)(n) : δ(n)];
z1, . . . , zn

)

=

∞∑
k1,...,kn=0

Ω(k1, . . . , kn)
zk11
k1!
· · · z

kn
n

kn!
,

where, for convenience,
(1.3)

Ω(k1, . . . , kn) =

A∏
j=1

(aj)k1θ(1)j +···+knθ(n)j

B(1)∏
j=1

(b
(1)
j )

k1φ
(1)
j

· · ·
B(n)∏
j=1

(b
(n)
j )

knφ
(n)
j

C∏
j=1

(cj)k1ψ(1)
j +···+knψ(n)

j

D(1)∏
j=1

(d
(1)
j )

k1δ
(1)
j

· · ·
D(n)∏
j=1

(d
(n)
j )

knδ
(n)
j

,

the coefficients

(1.4)

 θ
(m)
j (j = 1, . . . , A); φ

(m)
j (j = 1, . . . , B(m));

ψ
(m)
j (j = 1, . . . , C); δ

(m)
j (j = 1, · · · , D(m)); ∀m ∈ {1, . . . , n}

are real and positive, and (a) abbreviates the array of A parameters

a1, . . . , aA, (b(m)) abbreviates the array of B(m) parameters

b
(m)
j (j = 1, . . . , B(m)); ∀m ∈ {1, . . . , n},

with similar interpretations for (c) and (d(m)) (m = 1, . . . , n); et cetera.

The multiple series (1.2) converges absolutely either

(i) ∆i > 0 (i = 1, . . . , n), ∀ z1, · · · , zn ∈ C,
or

(ii) ∆i = 0 (i = 1, . . . , n), ∀ z1, · · · , zn ∈ C, |zi| < %i (i = 1, . . . , n).

The multiple series (1.2) is divergent when ∆i < 0 (i = 1, · · · , n) except
for the trivial case z1 = 0, . . . , zn = 0. Here

(1.5) ∆i ≡ 1 +

C∑
j=1

ψ
(i)
j +

D(i)∑
j=1

δ
(i)
j −

A∑
j=1

θ
(i)
j −

B(i)∑
j=1

φ
(i)
j (i = 1, . . . , n)
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and

(1.6) %i = min
µ1,..., µn>0

{Ei} (i = 1, · · · , n),

with
(1.7)

Ei = (µi)

1 +

D(i)∑
j=1

δ
(i)
j −

B(i)∑
j=1

φ
(i)
j

·


C∏
j=1

(
n∑
i=1

µiψ
(i)
j

)ψ(i)
j



D(i)∏
j=1

(
δ
(i)
j

)δ(i)j


A∏
j=1

(
n∑
i=1

µiθ
(i)
j

)θ(i)j



B(i)∏
j=1

(
φ
(i)
j

)φ(i)
j


.

For more details, the reader may be referred (for example) to the earlier work
by Srivastava and Daoust [17]. Special cases of (1.2) have been established
in terms of generalized hypergeometric functions of one and two variables,
respectively (see, e.g., [19, pp. 39-40]). For the sake of completeness, we recall
the familiar generalized hypergeometric series pFq defined by (see, e.g., [16,
Section 1.5])

(1.8)
pFq

[
α1, . . . , αp ;

β1, . . . , βq ;
z

]
=

∞∑
n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!

= pFq(α1, . . . , αp; β1, . . . , βq; z),

where (λ)n is the Pochhammer symbol defined (for λ ∈ C) by (see [16, p. 2 and
pp. 4-6]):

(1.9)

(λ)n : =

{
1 (n = 0)

λ(λ+ 1) . . . (λ+ n− 1) (n ∈ N := {1, 2, 3, . . .})

=
Γ(λ+ n)

Γ(λ)
(λ ∈ C \ Z−0 )

and Z−0 denotes the set of nonpositive integers.
We also need to recall the following Oberhettinger’s integral formula [13]:

(1.10)

∫ ∞
0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ
dx = 2λa−λ

(a
2

)µ Γ(2µ) Γ(λ− µ)

Γ(1 + λ+ µ)
,

provided 0 < <(µ) < <(λ).

2. Main results

We establish two generalized integral formulas whose integrands are a finite
product of Bessel functions of the first kind (1.1) multiplied by the integrand
of (1.10). The resulting integrals are found to be expressed in terms of the
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generalized Lauricella functions (1.2) as given in Theorem 1 and Theorem 2
below.

Theorem 1. The following integral formula holds true: For λ, µ, νj ∈ C
with <(νj) > −1, 0 < <(µ) < <(λ+ νj) (j = 1, . . . , n) and x > 0,
(2.1)∫ ∞

0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ n∏
j=1

Jνj

(
yj

x+ a+
√
x2 + 2ax

)
dx

= 21−µ aµ−λ

 n∏
j=1

(
yj
2a )νj

Γ(νj + 1)

 Γ(2µ)Γ(1 + λ+
∑n
j=1 νj)Γ(λ− µ+

∑n
j=1 νj)

Γ(λ+
∑n
j=1 νj)Γ(1 + λ+ µ+

∑n
j=1 νj)

· F 2:0;...;0
2:1;...;1

[ [1 + λ+

n∑
j=1

νj : 2, . . . , 2
]
,
[
λ− µ+

n∑
j=1

νj : 2, . . . , 2
]

:

[
1 + λ+ µ+

n∑
j=1

νj : 2, . . . , 2
]
,
[
λ+

n∑
j=1

νj : 2, . . . , 2
]

:

; . . . ; ;

[ν1 + 1 : 1]; . . . ; [νn + 1 : 1];
− y21

4a2
, . . . ,− y2n

4a2

]
.

Theorem 2. The following integral formula holds true: For λ, µ, νj ∈ C
with <(νj) > −1, 0 < <(µ) < <(λ+ νj) (j = 1, · · · , n) and x > 0,
(2.2)∫ ∞

0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ n∏
j=1

Jνj

(
x yj

x+ a+
√
x2 + 2ax

)
dx

= 21−µ aµ−λ
(

n∏
j=1

(
yj
4

)νj

Γ(νj + 1)

)
Γ(λ− µ)Γ(1 + λ+

∑n
j=1 νj)Γ(2µ+ 2

∑n
j=1 νj)

Γ(λ+
∑n
j=1 νj)Γ(1 + λ+ µ+ 2

∑n
j=1 νj)

· F 2:0;...;0
2:1;...;1

[ [
1 + λ+

∑n
j=1 νj : 2, . . . , 2

]
,
[
2µ+ 2

∑n
j=1 νj : 4, . . . , 4

]
:

[
1 + λ+ µ+ 2

∑n
j=1 νj : 4, . . . , 4

]
,

[
λ+

∑n
j=1 νj : 2, . . . , 2

]
:

; . . . ; ;

[ν1 + 1 : 1]; . . . ; [νn + 1 : 1];
− y21

16
, . . . ,−y

2
n

16

]
.

Proof. For convenience, let the left-hand side of the assertion (2.1) be de-
noted by I. By applying (1.1) to the integrand of (2.1) and then interchanging
the order of integral sign and summation, which is verified by uniform conver-
gence of the involved series under the given conditions, we get
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I =

∫ ∞
0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ
·
∞∑
k1=0

(−1)k1

(
y1

2(x+a+
√
x2+2ax)

)ν1+2k1

k1! Γ(ν1 + k1 + 1)

· · ·
∞∑

kn=0

(−1)kn

(
yn

2(x+a+
√
x2+2ax)

)νn+2kn

kn! Γ(νn + kn + 1)
dx

and

(2.3)

I =

∞∑
k1,··· ,kn=0

(−1)k1(y1/2)ν1+2k1

k1!Γ(ν1 + 1)(ν1 + 1)k1
· · · (−1)kn(yn/2)νn+2kn

kn!Γ(νn + 1)(νn + 1)kn

·
∫ ∞
0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ−ν1−···−νn−2k1−···−2kn
dx.

In view of the conditions given in Theorem 1, since

<(νj) > −1, 0 < <(µ) < <(λ+ νj) ≤ <(λ+ νj + 2kj)

(k ∈ N0 := N ∪ {0} and j = 1, . . . , n) ,

we can apply the integral formula (1.10) to the integral in (2.3) and obtain the
following expression:

I =21−µ aµ−λ
∞∑

k1,...,kn=0

(−1)k1(y1/2)ν1+2k1

k1!Γ(ν1 + 1)(ν1 + 1)k1
· · · (−1)kn(yn/2)νn+2kn

kn!Γ(νn + 1)(νn + 1)kn

· Γ(2µ)Γ(λ− µ+ ν1 + · · ·+ νn + 2k1 + · · ·+ 2kn)

Γ(1 + λ+ µ+ ν1 + · · ·+ νn + 2k1 + · · ·+ 2kn)

· (λ+ ν1 + · · ·+ νn + 2k1 + · · ·+ 2kn)a−(ν1+···+νn+2k1+···+2kn).

And we have

I =21−µ aµ−λ
∞∑

k1,··· ,kn=0

(−1)k1(y1/2)ν1+2k1

k1!Γ(ν1 + 1)(ν1 + 1)k1
· · · (−1)kn(yn/2)νn+2kn

kn!Γ(νn + 1)(νn + 1)kn

· Γ2µ)Γ(λ− µ+ ν1 + · · ·+ νn + 2k1 + · · ·+ 2kn)

Γ(1 + λ+ µ+ ν1 + · · ·+ νn + 2k1 + · · ·+ 2kn)

· (λ+ ν1 + · · ·+ νn + 2k1 + · · ·+ 2kn) · a−(λ+ν1+···+νn+2k1+···+2kn).

Therefore we find that
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(2.4)

I =21−µ aµ−λ(

n∏
j=1

(
yj
2a )νj

Γ(νj + 1)
)
Γ(2µ)Γ(λ− µ+

∑n
j=1 νj)Γ(1 + λ+

∑n
j=1 νj)

Γ(1 + λ+ µ+
∑n
j=1 νj)Γ(λ+

∑n
j=1 νj)

·
∞∑

k1,··· ,kn=0

(λ− µ+
∑n
j=1 νj)2k1+···+2kn(1 + λ+

∑n
j=1 νj)2k1+···+2kn

(λ+
∑n
j=1 νj)2k1+···+2kn(1 + λ+ µ+

∑n
j=1 νj)2k1+···+2kn

· 1

(ν1 + 1)k1 · · · (νn + 1)kn

(−y21/4a2)k1

k1!
· · · (−y

2
n/4a

2)kn

kn!
.

Finally, we interpret the multiple series in (2.4) as a special case of the general
hypergeometric series in several variables defined by (1.2). We are thus led to
the assertion (2.1). The assertion (2.2) of the Theorem 2.2 can be proved by a
similar argument.

Remark 1. It is easily seen that if we set n = 1 in (2.1) and (2.2) we
can arrive at the Equations (2.1) and (2.2) in Choi and Praveen [6].

3. Special cases

In this section, we derive certain new integral formulas for the cosine and
sine functions involving in the integrands of (2.1) and (2.2). To do this, we
recall the following known formula (see, e.g., [8, p. 79, Eq. (15)]):

(3.1) J−1/2(z) =

√
2

π z
cos z.

Setting ν1 = · · · = νn = − 1
2 in (2.1) and (2.2), and applying the expression

in (3.1) to the resulting identities, we obtain two integral formulas stated in
Corollary 1 and Corollary 2 below.

Corollary 1. Let the condition of Theorem 1 be satisfied. Then the
following integral formula holds true:
(3.2)∫ ∞

0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ
·
n∏
j=1


√

2
(
x+ a+

√
x2 + 2ax

)
π yj

cos

(
yj

x+ a+
√
x2 + 2ax

) dx

= 21−µ+
n
2 π−

n
2 aµ−λ+

n
2

 n∏
j=1

1
√
yj

 Γ(2µ)Γ(1 + λ− 1
2n)Γ(λ− µ− 1

2n)

Γ(λ− 1
2n)Γ(1 + λ+ µ− 1

2n)
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· F 2:0;...;0
2:1;...;1

[ [
1 + λ− 1

2
n : 2, . . . , 2

]
,
[
λ− µ− 1

2
n : 2, . . . , 2

]
:[

1 + λ+ µ− 1

2
n : 2, . . . , 2

]
,
[
λ− 1

2
n : 2, . . . , 2

]
:

; . . . ; ;

[1/2 : 1]; . . . ; [1/2 : 1];
− y21

4a2
, . . . ,− y2n

4a2

]
.

Corollary 2. Let the condition of Theorem 2 be satisfied . Then the
following integral formula holds true:

(3.3)

∫ ∞
0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ
·
n∏
j=1


√

2
(
x+ a+

√
x2 + 2ax

)
π x yj

cos

(
x yj

x+ a+
√
x2 + 2ax

) dx

= 21−µ+n π−
n
2 aµ−λ

 n∏
j=1

1
√
yj

 Γ(λ− µ) Γ(1 + λ− 1
2n) Γ(2µ− n)

Γ(λ− 1
2n) Γ(1 + λ+ µ− n)

· F 2:0;...;0
2:1;...;1

[ [
1 + λ− 1

2
n : 2, . . . , 2

]
,
[
2µ− n : 4, . . . , 4

]
:[

1 + λ+ µ− n : 4, . . . , 4
]
,
[
λ− 1

2
n : 2, . . . , 2

]
:

; . . . ; ;

[1/2 : 1]; . . . ; [1/2 : 1];
− y21

16
, . . . ,−y

2
n

16

]
.

Remark 2. It is easily seen that if we set n = 1 in (3.2) and (3.3), we
can arrive at the Equations (3.2) and (3.3) in Choi and Praveen [6].

We also recall the following formula (see, e.g., [8, p. 79, Eq. (14)]):

(3.4) J1/2(z) =

√
2

π z
sin z.

Just as in finding the formulas (3.2) and (3.3), setting ν1 = · · · = νn = 1
2 in

(2.1) and (2.2), and applying the expression in (3.4) to the resulting identities,
we get two integral formulas asserted in Corollary 3 and Corollary 4 below.

Corollary 3. Let the condition of Theorem 1 be satisfied. Then the
following integral formula holds true:

(3.5)

∫ ∞
0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ
·
n∏
j=1


√

2
(
x+ a+

√
x2 + 2ax

)
π yj

sin

(
yj

x+ a+
√
x2 + 2ax

) dx
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= 21−µ+
n
2 π−

n
2 aµ−λ−

n
2

 n∏
j=1

√
yj

 Γ(2µ)Γ(1 + λ+ 1
2n)Γ(λ− µ+ 1

2n)

Γ(λ+ 1
2n)Γ(1 + λ+ µ+ 1

2n)

· F 2:0;...;0
2:1;...;1

[ [
1 + λ+

1

2
n : 2, . . . , 2

]
,
[
λ− µ+

1

2
n : 2, . . . , 2

]
:[

1 + λ+ µ+
1

2
n : 2, . . . , 2

]
,
[
λ+

1

2
n : 2, . . . , 2

]
:

; . . . ; ;

[3/2 : 1]; . . . ; [3/2 : 1];
− y21

4a2
, . . . ,− y2n

4a2

]
.

Corollary 4. Let the condition of Theorem 2 be satisfied . Then the
following integral formula holds true:

(3.6)

∫ ∞
0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ
·
n∏
j=1


√

2
(
x+ a+

√
x2 + 2ax

)
π x yj

sin

(
x yj

x+ a+
√
x2 + 2ax

) dx

= 21−µ π−
n
2 aµ−λ

 n∏
j=1

√
yj

 Γ(λ− µ) Γ(1 + λ+ 1
2n) Γ(2µ+ n)

Γ(λ+ 1
2n) Γ(1 + λ+ µ+ n)

· F 2:0;...;0
2:1;...;1

[ [
1 + λ+

1

2
n : 2, . . . , 2

]
,
[
2µ+ n : 4, . . . , 4

]
:[

1 + λ+ µ+ n : 4, . . . , 4
]
,
[
λ+

1

2
n : 2, . . . , 2

]
:

; . . . ; ;

[3/2 : 1]; . . . ; [3/2 : 1];
− y21

16
, . . . ,−y

2
n

16

]
.

Remark 3. It is easily seen that if we set n = 1 in (3.5) and (3.6), we
are led to the Equations (3.7) and (3.8) in Choi and Praveen [6].

4. Concluding remarks

Here we briefly consider another variation of the results derived in the pre-
ceding sections. Bessel functions are important special functions that arise
widely in science and engineering. Bessel functions of the first kind Jν(z) are
oscillatory and may be regarded as generalizations of trigonometric functions.
Indeed, for large argument z ≥ 1, the function

√
πz
2 Jν(z) is well approximated

by the trigonometric function cos(z − πν
2 −

π
4 ) (see, e.g., [14, Eq. (9.3)]). Cer-

tain special cases of integrals involving a finite product of Bessel functions of
the first kind Jν(z) of the type (2.1) have been investigated in the literature by
a number of authors with different arguments. For n = 3, the infinite integral
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(2.1) with different argument was evaluated independently by Bailey [4, p. 45,
Eq.(7.1)] and Rice [15, p. 60, Eq.(2.6)] who used different methods and dis-
cussed a number of interesting special cases of their main integral involving the
product of three Bessel functions. In the sequel, Srivastava and Exton [18] also
applied their integral formula involving the product of several Bessel functions
to give an explicit expression of a generalized random walk. Therefore, the
results presented in this paper are easily converted in terms of a similar type
of new interesting integrals with different arguments after some suitable para-
metric replacements. We are also trying to find certain possible applications of
those results presented here to some other research areas like random walk in
[18].
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