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NEW EXACT SOLUTIONS OF SOME NONLINEAR

EVOLUTION EQUATIONS BY SUB-ODE METHOD

Youho Lee∗ and Jeong Hyang An

Abstract. In this paper, an improved
(
G′

G

)
-expansion method is

proposed for obtaining travelling wave solutions of nonlinear evo-
lution equations. The proposed technique called

(
F
G

)
-expansion

method is more powerful than the method
(
G′

G

)
-expansion method.

The efficiency of the method is demonstrated on a variety of non-
linear partial differential equations such as KdV equation, mKdV
equation and Boussinesq equations. As a result, more travelling
wave solutions are obtained including not only all the known so-
lutions but also the computation burden is greatly decreased com-
pared with the existing method. The travelling wave solutions are
expressed by the hyperbolic functions and the trigonometric func-
tions. The result reveals that the proposed method is simple and
effective, and can be used for many other nonlinear evolutions equa-
tions arising in mathematical physics.

1. Introduction

The nonlinear wave phenomena appears in various scientific and en-
gineering fields such as fluid mechanics, plasma physics, optical fibers,
biology, solid state physics, chemical kinematics, chemical physics and
so on. In order to understand better the nonlinear phenomena as well
as further application in the practical life, it is important to seek their
more exact travelling wave solutions. Thus the methods for deriving
exact solutions for the governing equations have to be developed. Many
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powerful methods are used to obtain travelling solitary wave solutions
to nonlinear partial differential equations (PDEs) such as tanh method
[12, 13], the ansatz method [5, 6], the sub-ODE method [3, 4], Jacobi
elliptic function method [1], exp-function method [7, 8] and so on.

However, practically there is no unified method that can be used
to handle all types of nonlinear partial differential equations. Recently,

Wang et al. [2] introduced a new direct method called the
(
G′

G

)
-expansion

method to look for travelling wave solutions of nonlinear evolution equa-
tions. One of the most effective straightforward method to construct

exact solutions of PDEs is the
(
G′

G

)
-expansion method [9, 10, 11]. The(

G′

G

)
-expansion method is based on the assumptions that the travelling

wave solutions can be expressed by a polynomial in
(
G′

G

)
. Later Zhang et

al. [16] proposed a generalized
(
G′

G

)
-expansion method to improve and

extend Wang et al.s work [2] for solving variable-coefficient equations
and high-dimensional equations.

Motivated by the work in [2], the main purpose of this paper is to
introduce a new technique called

(
F
G

)
-expansion method to find more

exact solutions for nonlinear equations. The main idea behind the
(
F
G

)
-

expansion method is that the travelling wave solutions of a nonlinear
evolution equation can be expressed by a polynomial in

(
F
G

)
, where

G = G(ξ) and F = F (ξ) satisfy the first order linear ordinary dif-
ferential system (FLODS) as follows: F ′(ξ) = λG(ξ), G′(ξ) = µF (ξ),

F ′ = dF (ξ)
dξ , G′ = dG(ξ)

dξ , ξ = x− ωt, λ, µ and ω are constants. The degree

of the polynomial can be determined by considering the homogeneous
balance between the highest order derivative and nonlinear terms ap-
pearing in the given nonlinear evolution equations. The coefficients of
the polynomial can be obtained by solving a set of algebraic equations
resulted from the process of using the method. The efficiency of the(
F
G

)
-expansion method is demonstrated on a variety of nonlinear partial

equations such as KdV equation, mKdV equation and Boussinesq equa-
tions. Moreover, the proposed method is capable of greatly minimizing
the size of computational work compared to the existing technique. This
is due to use of simple first order linear ordinary differential system in the
proposed algorithm instead of second order linear ordinary differential
equation as in [2].

The rest of this paper is organized as follows. In Section 2, we ex-
plain the

(
F
G

)
-expansion method for finding travelling wave solutions of
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nonlinear evolution equations and give some advantage of the method.
From Section 3 to Section 5, we illustrate the method in detail with use
of KdV equation, mKdV equation and the variant Boussinesq equations.
In Section 6, some conclusions are given.

2. Description of the
(
F
G

)
-expansion method

The
(
F
G

)
-expansion method for finding travelling wave solutions of

nonlinear evolution equations is the followings:
Suppose that a nonlinear equation, say in two independent variables x
and t, is given by

P (u, ut, ux, uxx, utt, ...) = 0,(1)

where u = u(x, t) is an unknown function, P is a polynomial in u =
u(x, t) and its various partial derivatives, in which the highest order
derivatives and nonlinear terms are involved. In the following we give
the main steps of the

(
F
G

)
-expansion method.

Step 1. Combining the independent variables x and t into one variable
ξ = x− ωt, we suppose that

u(x, t) = u(ξ), ξ = x− ωt,(2)

the travelling wave variable (2) permits us reducing (1) to an ODE for
u = u(ξ)

Q(u, u′, u′′, u′′′, ...) = 0.(3)

Step 2. Suppose that the solution of ODE (3) can be expressed by a
polynomial in

(
F
G

)
as follows:

u(ξ) =
n∑
i=0

ai

(
F

G

)i
,(4)

where G = G(ξ) and F = F (ξ) satisfy the FLODS in the form

F ′(ξ) = λG(ξ), G′(ξ) = µF (ξ).(5)

a0, a1, · · · , an, λ and µ are constants to be determined later, an 6= 0.
The positive integer n can be determined by considering the homoge-
neous balance between the highest order derivatives and nonlinear terms
appearing in ODE (3).
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With the aid of Eq.(5), we can find the following solutions F (ξ) and
G(ξ), which are listed as follows:

Type 1. If λ > 0 and µ > 0, then Eq.(5) has the following hyperbolic
function solutions:

(6)

{
F (ξ) = C1cosh(

√
λ
√
µξ) + C2

√
λ√
µsinh(

√
λ
√
µξ),

G(ξ) = C1

√
µ√
λ

sinh(
√
λ
√
µξ) + C2cosh(

√
λ
√
µξ).

Type 2. If λ < 0 and µ < 0, then Eq.(5) has the following hyperbolic
function solutions:

(7)

{
F (ξ) = C1cosh(

√
−λ
√
−µξ)− C2

√
−λ√
−µsinh(

√
−λ
√
−µξ),

G(ξ) = −C1

√
−µ√
−λsinh(

√
−λ
√
−µξ) + C2cosh(

√
−λ
√
−µξ).

Type 3. If λ > 0 and µ < 0, then Eq.(5) has the following trigonometric
function solutions:

(8)

{
F (ξ) = C1cos(

√
λ
√
−µξ) + C2

√
λ√
−µsin(

√
λ
√
−µξ),

G(ξ) = −C1

√
−µ√
λ

sin(
√
λ
√
−µξ) + C2cos(

√
λ
√
−µξ).

Type 4. If λ < 0 and µ > 0,then Eq.(5) has the following trigonometric
function solutions:

(9)

{
F (ξ) = C1cos(

√
−λ√µξ)− C2

√
−λ√
µ sin(

√
−λ√µξ),

G(ξ) = C1

√
µ√
−λsin(

√
−λ√µξ) + C2cos(

√
−λ√µξ).

Step 3. Substituting (4) and Eq.(5) into Eq.(3) separately yields a set

of algebraic equations for
(
F
G

)i
(i = 1, 2, · · · , n). Setting the coefficients

of
(
F
G

)i
to zero yields a set of nonlinear algebraic equations in a0, ai(i =

1, 2, · · · , n) and ω. Solving the nonlinear algebraic equations by Maple
and Mathematica, we obtain many exact solutions of Eq.(1) according
to (2), (4), (6), (7), (8) and (9).

Remark 2.1. From the above cases, it is concluded that the pro-
posed method can produce more travelling solutions compare with the(
G′

G

)
-expansion method. This can be easily seen from the characteristic

equation of Eq.(5).

Remark 2.2. In this remark, we compare the computation work with
the existing method. The

(
F
G

)
-expansion method gives the derivations
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F
G

)′
= λ− µ

(
F
G

)2
(
F
G

)′′
= −2λµ

(
F
G

)
+ 2µ2

(
F
G

)3
(
F
G

)′′′
= −2λ2µ+ 8λµ2

(
F
G

)2 − 6µ3
(
F
G

)4
...

The
(
G′

G

)
-expansion method yields the following derivations(

G′

G

)′
= −λ

(
G′

G

)
− µ−

(
G′

G

)2
(
G′

G

)′′
= λµ+ (λ2 + 2µ)

(
G′

G

)
+ 3λ

(
G′

G

)2
+ 2

(
G′

G

)3
(
G′

G

)′′′
= −(λ2µ+ 2µ2)− (λ3 + 8λµ)

(
G′

G

)
− (7λ2 + 8µ)

(
G′

G

)2
−12λ

(
G′

G

)3
− 6

(
G′

G

)4
...

From the above result we conclude that the proposed method is capable
of greatly minimizing the size of computational work compared to the
existing technique.

Because of the significant role of the KdV and the mKdV equations in
the solitary wave theory, the methods presented above will be applied to
these two equations first, then we will proceed to the variant Boussinesq
equation.

3. Application to the KdV equation

The KdV equation

ut + uux + δuxxx = 0,(10)

is an important mathematical model with wide application in quantum
mechanics and nonlinear optics. Eq.(10) is integrable and it has also
been used to describe a number of important physical phenomena such
as magnetohydrodynamics waves in a warm plasma, acoustic waves in
an harmonic crystal and ion-acoustic waves [17, 19]. Certainly there are
many different exact solutions of Eq.(10). This equation has soliton, ra-
tional and elliptic solutions [2, 15]. Recently Wang [2] made an effort to
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obtain some new exact solutions of the Korteweg-de Vries equation. He

used
(
G′

G

)
-expansion method to solve the Korteweg-de Vries equations.

The KdV equation(10) can be converted to the ODE

−ωu+
1

2
u2 + δu′′ = 0,(11)

upon using u(x, t) = u(ξ), ξ = x−ωt and integrating the resulting ODE
once and neglecting the constant of integration.

Suppose that the solution of ODE (11) can be expressed by a poly-
nomial in

(
F
G

)
as follows:

u(ξ) =

n∑
i=0

ai

(
F

G

)i
,(12)

where F = F (ξ) and G = G(ξ) satisfy the FLODS in the form

F ′(ξ) = λG(ξ), G′(ξ) = µF (ξ).(13)

By using (12) and Eq.(13) it can be easily derived that

(14)


u2 = a2n

(
F
G

)2n
+ a2n−1

(
F
G

)2(n−1)
+ · · · ,

u′ = −nµan
(
F
G

)n+1 − (n− 1)µan−1
(
F
G

)n
+ · · · ,

u′′ = n(n+ 1)µ2an
(
F
G

)n+2
+ (n− 1)nµ2an−1

(
F
G

)n+1
+ · · · .

Considering the homogeneous balance between u′′ and u2 in Eq.(11)
gives n = 2, so we can write (12) as

u(ξ) = a2

(
F

G

)2

+ a1

(
F

G

)
+ a0, a2 6= 0,(15)

and therefore

(16)


u2 = a22

(
F
G

)4
+ 2a2a1

(
F
G

)3
+ (a21 + 2a2a0)

(
F
G

)2
+2a1a0

(
F
G

)
+ a20,

u′′ = 6µ2a2
(
F
G

)4
+ 2µ2a1

(
F
G

)3 − 8λµa2
(
F
G

)2
−2λµa1

(
F
G

)
+ 2λ2a2.

By substituting (15) and (16) into Eq.(11) and collecting all terms
with the same power of

(
F
G

)
together, the left-hand side of Eq.(11)

is converted into another polynomial in
(
F
G

)
. Equating each coeffi-

cient of this polynomial to zero, yields a set of algebraic equations for
a2, a1, a0, ω, λ, µ and δ as follows:(

F
G

)0
: −ωa0 + 1

2a
2
0 + 2δa2λ

2 = 0
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F
G

)1
: −ωa1 + a0a1 − 2δa1λµ = 0(

F
G

)2
: −ωa2 + a0a2 + 1

2a
2
1 − 8δa2λµ = 0(

F
G

)3
: a1a2 + 2δa1µ

2 = 0(
F
G

)4
: 1
2a

2
2 + 6δa2µ

2 = 0

Solving the system of algebraic equations using Maple yields the fol-
lowing sets of nontrivial solutions:

Case 1.
{
a2 = −12δµ2, a1 = 0, a0 = 4δλµ, ω = −4δλµ

}
,

Case 2.
{
a2 = −12δµ2, a1 = 0, a0 = 12δλµ, ω = 4δλµ

}
.

By using the above cases of the coefficients, expression (15) can be
written as the following:

u(x, t) = a2

(
F

G

)2

+ a1

(
F

G

)
+ a0,(17)

where ξ = x− ωt.
Substituting the above cases of the coefficients into (17) we can ob-

tain four types of travelling wave solutions of the KdV equation (10) as
follows:
First we consider the Case 1. When λ > 0 and µ > 0, we obtain the
hyperbolic function solutions

u11(x, t) =− 12δµ2

C1cosh(
√
λ
√
µξ) + C2

√
λ√
µsinh(

√
λ
√
µξ)

C1

√
µ√
λ

sinh(
√
λ
√
µξ) + C2cosh(

√
λ
√
µξ)

2

+ 4δλµ,

(18)

where ξ = x+ 4δλµt, C1 and C2 are arbitrary constants.

If C1 and C2 are taken as special values, the various known results in
the literature can be recovered, for instance, if C1 > 0, C2

1 > C2
2 , then

(18) can be written as

u11(x, t) = 12δλµ sech2(
√
λµξ + ξ0)− 8δλµ,

which is the known solitary wave solution of Eq.(10) obtain in [20], where

ξ0 = tanh−1 C1

C2

√
λ
µ

and ξ = x+ 4δλµt.
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When λ < 0 and µ < 0,we obtain the hyperbolic function solutions

u12(x, t) =− 12δµ2

 C1cosh(
√
−λ
√
−µξ)− C2

√
−λ√
−µ sinh(

√
−λ
√
−µξ)

−C1

√
−µ√
−λ sinh(

√
−λ
√
−µξ) + C2cosh(

√
−λ
√
−µξ)

2

+ 4δλµ,

(19)

where ξ = x+ 4δλµt, C1 and C2 are arbitrary constants.
If C1 and C2 are taken as special values, the various known results in

the literature can be recovered, for instance, if C1 > 0, C2
1 > C2

2 , then
(19) can be written as

u12(x, t) = 12δλµ sech2(
√
λµξ − ξ0)− 8δλµ,

where ξ0 = tanh−1 C1

C2

√
λ
µ

and ξ = x+ 4δλµt.

When λ > 0 and µ < 0, we obtain the trigonometric function solu-
tions

u13(x, t) =− 12δµ2

 C1cos(
√
λ
√
−µξ) + C2

√
λ√
−µ sin(

√
λ
√
−µξ)

−C1

√
−µ√
λ

sin(
√
λ
√
−µξ) + C2cos(

√
λ
√
−µξ)

2

+ 4δλµ,

(20)

where ξ = x+ 4δλµt, C1 and C2 are arbitrary constants.
When λ < 0 and µ > 0, we obtain the trigonometric function solu-

tions

u14(x, t) =− 12δµ2

C1cos(
√
−λ√µξ)− C2

√
−λ√
µ sin(

√
−λ√µξ)

C1

√
µ√
−λ sin(

√
−λ√µξ) + C2cos(

√
−λ√µξ)

2

+ 4δλµ,

(21)

where ξ = x+ 4δλµt, C1 and C2 are arbitrary constants.
Next we consider the solutions for the Case 2. When λ > 0 and

µ > 0, we obtain the hyperbolic function solutions

u21(x, t) =− 12δµ2

C1cosh(
√
λ
√
µξ) + C2

√
λ√
µsinh(

√
λ
√
µξ)

C1

√
µ√
λ

sinh(
√
λ
√
µξ) + C2cosh(

√
λ
√
µξ)

2

+ 12δλµ,

(22)

where ξ = x− 4δλµt, C1 and C2 are arbitrary constants.
If C1 and C2 are taken as special values, the various known results in

the literature can be recovered, for instance, if C1 > 0, C2
1 > C2

2 , then
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(22) can be written as

u21(x, t) = 12δλµ sech2(
√
λµξ + ξ0),

which is the known solitary wave solution of the KDV equation (10)

obtained in [20], where ξ0 = tanh−1 C1

C2

√
λ
µ

and ξ = x− 4δλµt.

When λ < 0 and µ < 0,we obtain the hyperbolic function solutions

u22(x, t) =− 12δµ2

 C1cosh(
√
−λ
√
−µξ)− C2

√
−λ√
−µ sinh(

√
−λ
√
−µξ)

−C1

√
−µ√
−λ sinh(

√
−λ
√
−µξ) + C2cosh(

√
−λ
√
−µξ)

2

+ 12δλµ,

(23)

where ξ = x− 4δλµt, C1 and C2 are arbitrary constants.
If C1 and C2 are taken as special values, the various known results in

the literature can be recovered, for instance, if C1 > 0, C2
1 > C2

2 , then
(23) can be written as

u22(x, t) = 12δλµ sech2(
√
λµξ − ξ0),

where ξ0 = tanh−1 C1

C2

√
λ
µ

and ξ = x− 4δλµt.

When λ > 0 and µ < 0, we obtain the trigonometric function solu-
tions

u23(x, t) =− 12δµ2

 C1cos(
√
λ
√
−µξ) + C2

√
λ√
−µ sin(

√
λ
√
−µξ)

−C1

√
−µ√
λ

sin(
√
λ
√
−µξ) + C2cos(

√
λ
√
−µξ)

2

+ 12δλµ,

(24)

where ξ = x− 4δλµt, C1 and C2 are arbitrary constants.
When λ < 0 and µ > 0,we obtain the trigonometric function solutions

u24(x, t) =− 12δµ2

C1cos(
√
−λ√µξ)− C2

√
−λ√
µ sin(

√
−λ√µξ)

C1

√
µ√
−λ sin(

√
−λ√µξ) + C2cos(

√
−λ√µξ)

2

+ 12δλµ,

(25)

where ξ = x− 4δλµt, C1 and C2 are arbitrary constants.

4. Application to the mKdV equation

Let us consider the following nonlinear dispersive equation of the form
[21]

ut − u2ux + δuxxx = 0, δ > 0.(26)



692 Youho Lee and Jeong Hyang An

This equation is called modified KdV equation, which arises in the pro-
cess of understanding the role of nonlinear dispersion and in the forma-
tion of structures like liquid drops, and it exhibits compactions: solitons
with compact support [14]. In order to obtain the travelling wave solu-
tions, we set u(x, t) = u(ξ), ξ = x− ωt , then Eq.(26) reduces to

−ωu− 1

3
u3 + δu′′ = 0,(27)

Balancing the highest order of derivative term and nonlinear term in
Eq.(27), we can get n = 1. According to Eq.(4), the solution of Eq.(27)
can be written as

u(x, t) = a1

(
F

G

)
+ a0, a1 6= 0,(28)

where F = F (ξ) and G = G(ξ) satisfy the FLODS in the form

F ′(ξ) = λG(ξ), G′(ξ) = µF (ξ).(29)

By using (28) and Eq.(29) it is easily derived that

(30)

{
u3 = a31

(
F
G

)3
+ 3a21a0

(
F
G

)2
+ 3a1a

2
0

(
F
G

)
+ a30,

u′′ = 2µ2a1
(
F
G

)2 − 2λµa1
(
F
G

)
.

By substitution (28) and (30) into Eq.(27) and collection all terms
with the same power of

(
F
G

)
together, Eq.(27) is converted into another

polynomial in
(
F
G

)
. Equating the coefficients of this polynomial to zero,

we obtain a set of algebraic equations with respect to the unknowns
a1, a0, ω, λ, µ and δ as follows:(

F
G

)0
: −ωa0 − 1

3a
3
0 = 0(

F
G

)1
: −ωa1 − a20a1 − 2δλµa1 = 0(

F
G

)2
: −a0a21 = 0(

F
G

)3
: −1

3a
3
1 + 2δµ2a1 = 0

Solving the system of algebraic equations using Maple gives a follow-
ing set of nontrivial solutions:{

a1 = ±µ
√

6δ, a0 = 0, ω = −2δλµ
}
.(31)

Substituting (31) into (28) yields

u(x, t) = ±µ
√

6δ

(
F

G

)
, ξ = x+ 2δλµ.(32)
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Substituting the general solution of Eq.(29) into the formulae (32), we
have four types of travelling wave solutions of the mKdV equation(26)
as follows:

When λ > 0 and µ > 0, we obtain hyperbolic function solutions

u1(x, t) = ±µ
√

6δ

C1cosh(
√
λ
√
µξ) + C2

√
λ√
µ sinh(

√
λ
√
µξ)

C1

√
µ√
λ

sinh(
√
λ
√
µξ) + C2cosh(

√
λ
√
µξ)

 ,(33)

where ξ = x+ 2δλµt, C1 and C2 are arbitrary constants.
When λ < 0 and µ < 0, we obtain the following hyperbolic function

solutions
(34)

u2(x, t) = ±µ
√

6δ

 C1cosh(
√
−λ
√
−µξ)− C2

√
−λ√
−µ sinh(

√
−λ
√
−µξ)

−C1

√
−µ√
−λ sinh(

√
−λ
√
−µξ) + C2cosh(

√
−λ
√
−µξ)

 ,

where ξ = x+ 2δλµt, C1 and C2 are arbitrary constants.
When λ > 0 and µ < 0,we have trigonometric function solutions

(35) u3(x, t) = ±µ
√

6δ

 C1cos(
√
λ
√
−µξ) + C2

√
λ√
−µ sin(

√
λ
√
−µξ)

−C1

√
−µ√
λ

sin(
√
λ
√
−µξ) + C2cos(

√
λ
√
−µξ)

 ,

where ξ = x+ 2δλµt, C1 and C2 are arbitrary constants.
When λ < 0 and µ > 0, we have trigonometric function solutions:

(36) u4(x, t) = ±µ
√

6δ

C1cos(
√
−λ√µξ)− C2

√
−λ√
µ sin(

√
−λ√µξ)

C1

√
µ√
−λsin(

√
−λ√µξ) + C2cos(

√
−λ√µξ)

 ,

where ξ = x+ 2δλµt, C1 and C2 are arbitrary constants.
In particular, if C1 6= 0, C2 = 0, λµ > 0, then (33) and (34) become

u(x, t) = ±µ
√

6δ

√
λ

µ
tanh

(√
λµ(x+ 2δλµt)

)
,(37)

which are the solitary wave solutions of the mKdV equation Eq.(26).

5. Application to the Variant Boussinesq equations

In this section, we take variant Boussinesq equation as an example
to illustrate the effectiveness of the proposed method. Let us consider
the variant Boussinesq equation

ut − (uv)x + uxxx = 0,

vt + ux + vvx = 0.(38)
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The Boussinesq equations describes motion of long waves in shallow
water under gravity and in one dimensional nonlinear lattice. As a
model for water waves, where v is the velocity and u the total depth,
and the subscripts denote partial derivatives. For more details about
the formulation of Boussinesq equations, see [17, 18, 22]. To look for
the travelling wave solutions, we use the transformation u = u(ξ), v =
v(ξ), ξ = x− ωt, then Eq.(38)becomes

−ωu− uv + v′′ = 0,

−ωv + u+
1

2
v2 = 0.(39)

Considering the homogeneous balance between v′′ and uv in the first
equation, and u and v2 in the second equation of Eq.(39) we obtain
m = 2, n = 1, so we can write (4) as

(40)

{
u(x, t) = a2

(
F
G

)2
+ a1

(
F
G

)
+ a0, a2 6= 0,

v(x, t) = b1
(
F
G

)
+ b0, b1 6= 0,

where F = F (ξ) and G = G(ξ) satisfy the FLODS in the form

F ′(ξ) = λG(ξ), G′(ξ) = µF (ξ),(41)

By using Eq.(40) and Eq.(41) it can be easily derived that

(42)


v2 = b21

(
F
G

)2
+ 2b1b0

(
F
G

)
+ a20,

uv = a2b1
(
F
G

)3
+ (a2b0 + a1b1)

(
F
G

)2
+ (a1b0 + a0b1)

(
F
G

)
+ a0b0

v′′ = 2µ2b1
(
F
G

)2 − 2λµb1
(
F
G

)
.

By substitution (40) and (42) into Eq.(39) and collection all terms
with the same power of

(
F
G

)
together, Eq.(39) is converted into another

polynomial in
(
F
G

)
. Equating the coefficients of this polynomial to zero,

yields a set of algebraic equations for a2, a1, a0, b1, b0, ω, λ, µ and δ as
follows:(

F
G

)0
: −ωa0 + a0b0 = 0(

F
G

)1
: −ωa1 + a0b1 + a1b0 − 2λµb1 = 0(

F
G

)2
: −ωa2 + a1b1 + a2b0 = 0(

F
G

)3
: a2b1 + 2µ2b1 = 0(

F
G

)0
: −ωb0 + a0 + 1

2b
2
0 = 0
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F
G

)1
: −ωb1 + a1 + b1b0 = 0(

F
G

)2
: a2 + 1

2b
2
1 = 0

Solving the above algebraic equations using Maple, yields the follow-
ing sets of nontrivial solutions:

Case 1.
{
a2 = −2µ2, a1 = 0, a0 = 2λµ, b1 = 2µ, b0 = ±2

√
λµ ,

ω = ±2
√
λµ
}

.

Case 2.
{
a2 = −2µ2, a1 = 0, a0 = 2λµ, b1 = −2µ, b0 = ±2

√
λµ ,

ω = ±2
√
λµ
}

.

Substituting the above cases of the coefficients into the formulae (40),
we have four types of travelling wave solutions of the variant Boussinesq
equation(38) as follows:
First we consider the Case 1. When λ > 0 and µ > 0,

(43)


u11(x, t) = −2µ2

(
C1cosh(

√
λ
√
µξ)+C2

√
λ√
µ
sinh(

√
λ
√
µξ)

C1

√
µ√
λ
sinh(

√
λ
√
µξ)+C2cosh(

√
λ
√
µξ)

)2

+ 2λµ,

v11(x, t) = 2µ

(
C1cosh(

√
λ
√
µξ)+C2

√
λ√
µ
sinh(

√
λ
√
µξ)

C1

√
µ√
λ
sinh(

√
λ
√
µξ)+C2cosh(

√
λ
√
µξ)

)
± 2
√
λµ,

where ξ = x∓ 2
√
λµt, C1 and C2 are arbitrary constants.

If C1 and C2 are taken as special values, the various known results
in the literature can be rediscovered, for instance, if C1 > 0, C2

1 > C2
2 ,

then (43) can be written as{
u11(x, t) = 2λµ sech2(

√
λµξ + ξ0),

v11(x, t) = 2
√
λµ tanh(

√
λµξ + ξ0)± 2

√
λµ,

where ξ0 = tanh−1

(
C1

C2

√
λ
µ

)
and ξ = x∓ 2

√
λµt.

When λ < 0 and µ < 0,
(44)
u12(x, t) = −2µ2

(
C1cosh(

√
−λ
√
−µξ)−C2

√
−λ√
−µ sinh(

√
−λ
√
−µξ)

−C1

√
−µ√
−λ sinh(

√
−λ
√
−µξ)+C2cosh(

√
−λ
√
−µξ)

)2

+ 2λµ,

v12(x, t) = 2µ

(
C1cosh(

√
−λ
√
−µξ)−C2

√
−λ√
−µ sinh(

√
−λ
√
−µξ)

−C1

√
−µ√
−λ sinh(

√
−λ
√
−µξ)+C2cosh(

√
−λ
√
−µξ)

)
± 2
√
λµ,

where ξ = x∓ 2
√
λµt, C1 and C2 are arbitrary constants.

If C1 and C2 are taken as special values, the various known results
in the literature can be rediscovered, for instance, if C1 > 0, C2

1 > C2
2 ,
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then (44) can be written as{
u12(x, t) = 2λµ sech2(ξ0 −

√
λµξ),

v12(x, t) = −2
√
λµ tanh(ξ0 −

√
λµξ)± 2

√
λµ,

where ξ0 = tanh−1

(
C1

C2

√
λ
µ

)
and ξ = x∓ 2

√
λµt.

When λ > 0 and µ < 0,

(45)


u13(x, t) = −2µ2

(
C1cos(

√
λ
√
−µξ)+C2

√
λ√
−µ

sin(
√
λ
√
−µξ)

−C1

√
−µ√
λ

sin(
√
λ
√
−µξ)+C2cos(

√
λ
√
−µξ)

)2

+ 2λµ,

v13(x, t) = 2µ

(
C1cos(

√
λ
√
−µξ)+C2

√
λ√
−µ

sin(
√
λ
√
−µξ)

−C1

√
−µ√
λ

sin(
√
λ
√
−µξ)+C2cos(

√
λ
√
−µξ)

)
± 2i
√
−λµ,

where ξ = x∓ 2i
√
−λµt, C1 and C2 are arbitrary constants.

When λ < 0 and µ > 0,

(46)


u14(x, t) = −2µ2

(
C1cos(

√
−λ√µξ)−C2

√
−λ√
µ sin(

√
−λ√µξ)

C1

√
µ√
−λ

sin(
√
−λ√µξ)+C2cos(

√
−λ√µξ)

)2

+ 2λµ,

v14(x, t) = 2µ

(
C1cos(

√
−λ√µξ)−C2

√
−λ√
µ sin(

√
−λ√µξ)

C1

√
µ√
−λ

sin(
√
−λ√µξ)+C2cos(

√
−λ√µξ)

)
± 2i
√
−λµ,

where ξ = x+∓2i
√
−λµt, C1 and C2 are arbitrary constants.

Next we consider the solutions for the Case 2. When λ > 0 and
µ > 0,

(47)


u21(x, t) = −2µ2

(
C1cosh(

√
λ
√
µξ)+C2

√
λ√
µ
sinh(

√
λ
√
µξ)

C1

√
µ√
λ
sinh(

√
λ
√
µξ)+C2cosh(

√
λ
√
µξ)

)2

+ 2λµ,

v21(x, t) = −2µ

(
C1cosh(

√
λ
√
µξ)+C2

√
λ√
µ
sinh(

√
λ
√
µξ)

C1

√
µ√
λ
sinh(

√
λ
√
µξ)+C2cosh(

√
λ
√
µξ)

)
± 2
√
λµ,

where ξ = x∓ 2
√
λµt, C1 and C2 are arbitrary constants.

If C1 and C2 are taken as special values, the various known results
in the literature can be rediscovered, for instance, if C1 > 0, C2

1 > C2
2 ,

then (47) can be written as{
u21(x, t) = 2λµ sech2(

√
λµξ + ξ0),

v21(x, t) = −2
√
λµ tanh(

√
λµξ + ξ0)± 2

√
λµ,

where ξ0 = tanh−1

(
C1

C2

√
λ
µ

)
and ξ = x∓ 2

√
λµt.
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When λ < 0 and µ < 0,
(48)
u22(x, t) = −2µ2

(
C1cosh(

√
−λ
√
−µξ)−C2

√
−λ√
−µ sinh(

√
−λ
√
−µξ)

−C1

√
−µ√
−λ sinh(

√
−λ
√
−µξ)+C2cosh(

√
−λ
√
−µξ)

)2

+ 2λµ,

v22(x, t) = −2µ

(
C1cosh(

√
−λ
√
−µξ)−C2

√
−λ√
−µ sinh(

√
−λ
√
−µξ)

−C1

√
−µ√
−λ sinh(

√
−λ
√
−µξ)+C2cosh(

√
−λ
√
−µξ)

)
± 2
√
λµ,

where ξ = x∓ 2
√
λµt, C1 and C2 are arbitrary constants.

If C1 and C2 are taken as special values, the various known results
in the literature can be rediscovered, for instance, if C1 > 0, C2

1 > C2
2 ,

then (48) can be written as{
u22(x, t) = 2λµ sech2(

√
λµξ − ξ0),

v22(x, t) = 2
√
λµ tanh(

√
λµξ − ξ0)± 2

√
λµ,

where ξ0 = tanh−1

(
C1

C2

√
λ
µ

)
and ξ = x∓ 2

√
λµt.

When λ > 0 and µ < 0,

(49)


u23(x, t) = −2µ2

(
C1cos(

√
λ
√
−µξ)+C2

√
λ√
−µ

sin(
√
λ
√
−µξ)

−C1

√
−µ√
λ

sin(
√
λ
√
−µξ)+C2cos(

√
λ
√
−µξ)

)2

+ 2λµ,

v23(x, t) = −2µ

(
C1cos(

√
λ
√
−µξ)+C2

√
λ√
−µ

sin(
√
λ
√
−µξ)

−C1

√
−µ√
λ

sin(
√
λ
√
−µξ)+C2cos(

√
λ
√
−µξ)

)
± 2i
√
−λµ,

where ξ = x∓ 2i
√
−λµt, C1 and C2 are arbitrary constants.

When λ < 0 and µ > 0,

(50)


u24(x, t) = −2µ2

(
C1cos(

√
−λ√µξ)−C2

√
−λ√
µ sin(

√
−λ√µξ)

C1

√
µ√
−λ

sin(
√
−λ√µξ)+C2cos(

√
−λ√µξ)

)2

+ 2λµ,

v24(x, t) = −2µ

(
C1cos(

√
−λ√µξ)−C2

√
−λ√
µ sin(

√
−λ√µξ)

C1

√
µ√
−λ

sin(
√
−λ√µξ)+C2cos(

√
−λ√µξ)

)
± 2i
√
−λµ,

where ξ = x∓ i
√
−λµt, C1 and C2 are arbitrary constants.

6. Conclusion

In this paper,
(
F
G

)
-expansion method is used to obtain more general

exact solutions of the nonlinear evolution equations. The advantages of
the

(
F
G

)
-expansion method is that it is possible to obtain more travelling

wave solutions with distinct physical structures. From our results, some
results previously known as traveling wave solutions and soliton-like so-
lutions can be recovered. Moreover, the proposed method is capable
of greatly minimizing the size of computational work compared to the
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existing technique. This is due to use of first order linear ordinary differ-
ential equation in the proposed algorithm instead of second order linear
ordinary differential equation as in [2]. Finally, it is worth to mention
that the implementation of this proposed method is very simple and
straightforward, and it can also be applied to other nonlinear evolution
equations arising in mathematical physics.
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