NOTE ON THE CLASSICAL WATSON'S THEOREM FOR THE SERIES ${ }_{3} F_{2}$

J. Chor* and P. Agarwal

Abstract

Summation theorems for hypergeometric series ${ }_{2} F_{1}$ and generalized hypergeometric series ${ }_{p} F_{q}$ play important roles in themselves and their diverse applications. Some summation theorems for ${ }_{2} F_{1}$ and ${ }_{p} F_{q}$ have been established in several or many ways. Here we give a proof of Watson's classical summation theorem for the series ${ }_{3} F_{2}(1)$ by following the same lines used by Rakha [7] except for the last step in which we applied an integral formula introduced by Choi et al. [3].

1. Introduction and Preliminaries

We begin by introducing a response of Michael Atiyah [9] when Michael Atiyah and Isadore Singer were interviewed which took place in Oslo on May 24, 2004, during the Abel Prize celebrations: Any good theorem should have several proofs, the more the better. For two reasons: usually, different proofs have different strengths and weaknesses, and they generalize in different directions-they are not just repetitions of each other \cdots. If you cannot look at a problem from different directions, it is probably not very interesting; the more perspectives, the better.

We recall the well known classical Watson's summation theorem for the generalized hypergeometric series ${ }_{3} F_{2}$ (see, e.g., $[1$, p.16, Eq. (1)]):

[^0]\[

$$
\begin{align*}
& { }_{3} F_{2}\left[\begin{array}{c}
a, b, c ; \\
\frac{1}{2}(a+b+1), 2 c ;
\end{array}\right] \\
& \quad=\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(c+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right) \Gamma\left(c-\frac{1}{2} a-\frac{1}{2} b+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right) \Gamma\left(c-\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(c-\frac{1}{2} b+\frac{1}{2}\right)} \tag{1.1}
\end{align*}
$$
\]

provided that $\Re(2 c-a-b)>-1$. This Watson's summation theorem (1.1) has been established in many different ways (see, e.g., $[1,2,5,7$, $8,11,12])$. For concise outlines of various proofs of (1.1), see [7, 8].

Here we present a proof of Watson's summation theorem (1.1) for the series ${ }_{3} F_{2}(1)$ by following the same lines used by Rakha [7] except for the last step in which we applied an integral formula introduced by Choi et al. [3].

For our purpose, we need to recall some known functions and earlier works. The well known Beta function $B(\alpha, \beta)$ is defined by

$$
\begin{equation*}
B(\alpha, \beta)=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} d t \quad(\Re(\alpha)>0 ; \Re(\beta)>0) \tag{1.2}
\end{equation*}
$$

or, equivalently,
(1.3) $\quad B(\alpha, \beta)=2 \int_{0}^{\pi / 2}(\sin \theta)^{2 \alpha-1}(\cos \theta)^{2 \beta-1} d \theta \quad(\Re(\alpha)>0 ; \Re(\beta)>0)$.

An integral representation for ${ }_{3} F_{2}$ is given as follows (see [4]):

$$
\begin{align*}
& { }_{3} F_{2}\left[\begin{array}{c}
a, b, c ; \\
d, e ;
\end{array}\right] \tag{1.4}\\
& \quad=\frac{\Gamma(d)}{\Gamma(d-c) \Gamma(c)} \int_{0}^{1} t^{c-1}(1-t)^{d-c-1}{ }_{2} F_{1}\left[\begin{array}{c}
a, b ; \\
e ;
\end{array}\right] d t
\end{align*}
$$

provided $\Re(c)>0, \Re(d-c)>0$ and $\Re(d-a-b)>0$.
A transformation formula for ${ }_{2} F_{1}$ is as follows (see, e.g., $[6$, p. 65, Theorem 24]):

$$
{ }_{2} F_{1}\left[\begin{array}{rr}
a, b ; & 2 y \tag{1.5}\\
2 b ; & 2
\end{array}\right]=(1-y)^{-a}{ }_{2} F_{1}\left[\begin{array}{r}
\frac{1}{2} a, \frac{1}{2} a+\frac{1}{2} ; \\
b+\frac{1}{2} ;
\end{array}\left(\frac{y}{1-y}\right)^{2}\right] d t
$$

provided $|y|<\frac{1}{2}$ and $\left|\frac{y}{1-y}\right|<1$.

Euler's integral representation for the hypergeometric function ${ }_{2} F_{1}$ is given as follows (see [10, p. 65]):
(1.6) ${ }_{2} F_{1}\left[\begin{array}{r}a, b ; \\ c ;\end{array}\right]=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-z t)^{-a} d t$, provided that $\Re(c)>\Re(b)>0$ and $|z|<1$.

An integral representation for ${ }_{2} F_{1}(1 / 2)$ is given as follows (see, e.g., [3, p. 510, Eq. (8)]):

$$
\begin{align*}
{ }_{2} F_{1}\left[\begin{array}{cc}
a, & b ; \\
& c ; \\
& \frac{1}{2}
\end{array}\right]=\frac{2^{a} \Gamma(c)}{\Gamma(b) \Gamma(c-b)} \tag{1.7}\\
\quad \cdot \int_{0}^{\pi / 2}(\cos \theta)^{b-1}\left(\sin \frac{\theta}{2}\right)^{2 c-2 b-1}\left(\cos \frac{\theta}{2}\right)^{2 a-2 c+1} d \theta
\end{align*}
$$

Gauss's second summation theorem is given as follows (see, e.g., [1, p. 10, Eq. (2)]):

$$
{ }_{2} F_{1}\left[\begin{array}{rr}
a, b ; & \frac{1}{\frac{1}{2}(a+b+1) ;} \tag{1.8}
\end{array}\right]=\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right)} .
$$

2. Derivation of Watson's summation theorem (1.1)

Setting $e=2 b$ in (1.4), we have

$$
\begin{align*}
& { }_{3} F_{2}\left[\begin{array}{c}
a, b, c ; \\
d, 2 b ;
\end{array}\right] \tag{2.1}\\
& \quad=\frac{\Gamma(d)}{\Gamma(d-c) \Gamma(c)} \int_{0}^{1} t^{c-1}(1-t)^{d-c-1}{ }_{2} F_{1}\left[\begin{array}{c}
a, b ; \\
2 b ;
\end{array}\right] d t
\end{align*}
$$

Replacing y by $\frac{1}{2} z t$ in (1.5) and applying the resulting identity to the ${ }_{2} F_{1}$ in (2.1), after a little simplification, we obtain

$$
\begin{align*}
& { }_{3} F_{2}\left[\begin{array}{r}
a, b, c ; \\
d, 2 b ;
\end{array}\right]=\frac{\Gamma(d)}{\Gamma(d-c) \Gamma(c)} \tag{2.2}\\
& \quad \cdot \int_{0}^{1} t^{c-1}(1-t)^{d-c-1}\left(1-\frac{1}{2} z t\right)^{-a}{ }_{2} F_{1}\left[\begin{array}{r}
\frac{1}{2} a, \frac{1}{2} a+\frac{1}{2} ; \\
b+\frac{1}{2} ;
\end{array}\left(\frac{z t}{2-z t}\right)^{2}\right] d t .
\end{align*}
$$

Expressing the ${ }_{2} F_{1}$ in (2.2) as a series and changing the order of integration and summation, which is easily seen to be justified due to the uniform convergence of the series on the interval $(0,1)$, after a little algebra, we have

$$
\begin{align*}
& { }_{3} F_{2}\left[\begin{array}{c}
a, b, c ; \\
d, 2 b ;
\end{array}\right]=\frac{\Gamma(d)}{\Gamma(d-c) \Gamma(c)} \tag{2.3}\\
& \quad \cdot \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2} a\right)_{n}\left(\frac{1}{2} a+\frac{1}{2}\right)_{n}}{\left(b+\frac{1}{2}\right)_{n} n!}\left(\frac{z}{2}\right)^{2 n} \int_{0}^{1} t^{c+2 n-1}(1-t)^{d-c-1}\left(1-\frac{1}{2} z t\right)^{-(a+2 n)} d t .
\end{align*}
$$

Using (1.6) to evaluate the integral in (2.3), after a little simplification, we get

$$
\begin{align*}
& { }_{3} F_{2}\left[\begin{array}{r}
a, b, c ; \\
d, 2 b ;
\end{array}\right] \\
& \quad=\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2} a\right)_{n}\left(\frac{1}{2} a+\frac{1}{2}\right)_{n}(c)_{2 n}}{\left(b+\frac{1}{2}\right)_{n}(d)_{2 n} n!}\left(\frac{z}{2}\right)^{2 n}{ }_{2} F_{1}\left[\begin{array}{rr}
a+2 n, c+2 n ; & z \\
d+2 n ; & \frac{z}{2}
\end{array}\right] .
\end{align*}
$$

Interchanging b and c and taking $d=\frac{1}{2}(a+b+1)$ in (2.4), we have

$$
\begin{aligned}
& { }_{3} F_{2}\left[\begin{array}{c}
a, b, c ; \\
\frac{1}{2}(a+b+1), 2 c ; \\
2
\end{array}\right] \\
& \quad=\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2} a\right)_{n}\left(\frac{1}{2} a+\frac{1}{2}\right)_{n}(b)_{2 n}}{\left(c+\frac{1}{2}\right)_{n}\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)_{2 n} n!}\left(\frac{z}{2}\right)^{2 n}{ }_{2} F_{1}\left[\begin{array}{rr}
a+2 n, b+2 n ; & z \\
\frac{1}{2}(a+b+1)+2 n ; & \frac{2}{2}
\end{array}\right] .
\end{aligned}
$$

Taking $z=1$ in (2.5) and using (1.7) in the resulting equation, we obtain

$$
\begin{align*}
& { }_{3} F_{2}\left[\begin{array}{r}
a, b, c ; \\
\frac{1}{2}(a+b+1), 2 c ; \\
=
\end{array}\right] \tag{2.6}\\
& =\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2} a\right)_{n}\left(\frac{1}{2} a+\frac{1}{2}\right)_{n}(b)_{2 n}}{\left(c+\frac{1}{2}\right)_{n}\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)_{2 n} n!}\left(\frac{1}{2}\right)^{2 n} \frac{2^{a+2 n} \Gamma\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}+2 n\right)}{\Gamma(b+2 n) \Gamma\left(\frac{1}{2} a-\frac{1}{2} b+\frac{1}{2}\right)} \\
& \quad \cdot 2^{b-a} \int_{0}^{\pi / 2}(\cos \theta)^{b+2 n-1}(\sin \theta)^{a-b} d \theta,
\end{align*}
$$

where we used an elementary trigonometric identity: $\sin \theta=2 \sin (\theta / 2)$ $\cos (\theta / 2)$. Applying (1.3) to evaluate the integral in (2.6) and using Legendre's duplication formula for the Gamma function (see [10, p. 6, Eq. (29)]) in the resulting identity, we get

$$
\begin{align*}
& { }_{3} F_{2}\left[\begin{array}{c}
a, b, c ; \\
\frac{1}{2}(a+b+1), 2 c ;
\end{array}\right] \\
& \quad=\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right)}{ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{2} a, \frac{1}{2} b ; & 1 \\
c+\frac{1}{2} ;
\end{array}\right] \tag{2.7}
\end{align*}
$$

which, upon using the well known Gauss's summation theorem (see, e.g., [10, p. 64, Eq. (7)]), yields (1.1). This completes the proof of Watson's summation theorem (1.1).

Acknowledgements

The authors would like to express their deep gratitude for the reviewer's careful and through reading of this paper to point out several errors.

References

[1] W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, New York, 1964.
[2] R. C. Bhatt, Another proof of Watson's theorem for summing ${ }_{3} F_{2}(1)$, J. London Math. Soc. 40 (1965), 47-48.
[3] J. Choi, A. K. Rathie and Purnima, A Note on Gauss's Second Summation Theorem for the Series ${ }_{2} F_{1}\left(\frac{1}{2}\right)$, Commun. Korean Math. Soc. 22(4) (2007), 509-512.
[4] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, Vol. II, McGraw-Hill Book Company, New York, Toronto and London, 1954.
[5] T. M. MacRobert, Functions of Complex Variables, 5th edition, Macmillan, London, 1962.
[6] E. D. Rainville, Special Functions, Macmillan, New York, 1960.
[7] M. A. Rakha, A new proof of the classical Watson's summation theorem, Appl. Math. E-Notes 11 (2011), 278-282.
[8] A. K. Rathie and R. B. Paris, A new proof of Watson's theorem for the series ${ }_{3} F_{2}(1)$ App. Math. Sci. 3(4) (2009), 161-164.
[9] M. Raussen and C. Skau, Interview with Michael Atiya and Isadore Singer, Notices Amer. Math. Soc. 52 (2005), 225-233.
[10] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London, and New York (2012).
[11] G. N. Watson, A note on generalized hypergeometric series, Proc. London Math. Soc. 2(23) (1925), 13-15.
[12] F. J. Whipple, A group of generalized hypergeometric series; relations between 120 allied series of type $F(a, b, c ; e, f)$, Proc. London Math. Soc. 2(23) (1925), 104-114.

Junesang Choi
Department of Mathematics, Dongguk University,
Gyeongju 780-714, Republic of Korea.
E-mail: junesang@mail.dongguk.ac.kr
P. Agarwal

Department of Mathematics,
Anand International College of Engineering,
Jaipur-303012, India.
E-mail: goyal.praveen2011@gmail.com

[^0]: Received September 16, 2013. Accepted October 15, 2013.
 2010 Mathematics Subject Classification. Primary 33C20, 33C60; Secondary 33C65, 33C70.

 Key words and phrases. Gamma function and its Legendre duplication formula, Gauss's hypergeometric functions ${ }_{2} F_{1}$, Euler's integral formula for ${ }_{2} F_{1}$, classical Watson's theorem for ${ }_{3} F_{2}$, Gauss's summation theorem and second summation theorem for ${ }_{2} F_{1}$.
 *Corresponding author

