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NOTE ON THE CLASSICAL WATSON’S THEOREM

FOR THE SERIES 3F2

J. Choi∗ and P. Agarwal

Abstract. Summation theorems for hypergeometric series 2F1 and
generalized hypergeometric series pFq play important roles in them-
selves and their diverse applications. Some summation theorems for

2F1 and pFq have been established in several or many ways. Here
we give a proof of Watson’s classical summation theorem for the
series 3F2(1) by following the same lines used by Rakha [7] except
for the last step in which we applied an integral formula introduced
by Choi et al. [3].

1. Introduction and Preliminaries

We begin by introducing a response of Michael Atiyah [9] when
Michael Atiyah and Isadore Singer were interviewed which took place
in Oslo on May 24, 2004, during the Abel Prize celebrations: Any good
theorem should have several proofs, the more the better. For two rea-
sons: usually, different proofs have different strengths and weaknesses,
and they generalize in different directions-they are not just repetitions of
each other · · · . If you cannot look at a problem from different directions,
it is probably not very interesting; the more perspectives, the better.

We recall the well known classical Watson’s summation theorem for
the generalized hypergeometric series 3F2 (see, e.g., [1, p.16, Eq. (1)]):
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(1.1)

3F2

[
a, b, c ;

1
2(a+ b+ 1), 2c ;

1

]
=

Γ(12) Γ(c+ 1
2) Γ(12a+ 1

2b+ 1
2) Γ(c− 1

2a−
1
2b+ 1

2)

Γ(12a+ 1
2) Γ(12b+ 1

2) Γ(c− 1
2a+ 1

2) Γ(c− 1
2b+ 1

2)

provided that <(2c − a − b) > −1. This Watson’s summation theorem
(1.1) has been established in many different ways (see, e.g., [1, 2, 5, 7,
8, 11, 12]). For concise outlines of various proofs of (1.1), see [7, 8].

Here we present a proof of Watson’s summation theorem (1.1) for the
series 3F2(1) by following the same lines used by Rakha [7] except for
the last step in which we applied an integral formula introduced by Choi
et al. [3].

For our purpose, we need to recall some known functions and earlier
works. The well known Beta function B(α, β) is defined by

(1.2) B(α, β) =

∫ 1

0
tα−1(1− t)β−1dt (<(α) > 0; <(β) > 0)

or, equivalently,

(1.3) B(α, β) = 2

∫ π/2

0

(sin θ)2α−1(cos θ)2β−1dθ (<(α) > 0; <(β) > 0).

An integral representation for 3F2 is given as follows (see [4]):

(1.4)

3F2

[
a, b, c ;
d, e ;

z

]
=

Γ(d)

Γ(d− c)Γ(c)

∫ 1

0
tc−1(1− t)d−c−1

2F1

[
a, b ;
e ;

zt

]
dt,

provided <(c) > 0, <(d− c) > 0 and <(d− a− b) > 0.

A transformation formula for 2F1 is as follows (see, e.g., [6, p. 65,
Theorem 24]):

(1.5) 2F1

[
a, b ;

2b ;
2y

]
= (1− y)−a 2F1

[
1
2a,

1
2a+ 1

2 ;
b+ 1

2 ;

(
y

1− y

)2
]
dt,

provided |y| < 1
2 and

∣∣∣ y
1−y

∣∣∣ < 1.
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Euler’s integral representation for the hypergeometric function 2F1 is
given as follows (see [10, p. 65]):

(1.6) 2F1

[
a, b ;
c ;

z

]
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1 (1− t)c−b−1(1− zt)−adt,

provided that <(c) > <(b) > 0 and |z| < 1.

An integral representation for 2F1(1/2) is given as follows (see, e.g.,
[3, p. 510, Eq. (8)]):

(1.7)

2F1

[
a, b ;

c ;

1

2

]
=

2a Γ(c)

Γ(b)Γ(c− b)

·
∫ π/2

0
(cos θ)b−1

(
sin

θ

2

)2c−2b−1(
cos

θ

2

)2a−2c+1

dθ.

Gauss’s second summation theorem is given as follows (see, e.g., [1,
p. 10, Eq. (2)]):

(1.8) 2F1

[
a, b ;

1
2(a+ b+ 1) ;

1

2

]
=

Γ(12)Γ(12a+ 1
2b+ 1

2)

Γ(12a+ 1
2) Γ(12b+ 1

2)
.

2. Derivation of Watson’s summation theorem (1.1)

Setting e = 2b in (1.4), we have

(2.1)

3F2

[
a, b, c ;
d, 2b ;

z

]
=

Γ(d)

Γ(d− c)Γ(c)

∫ 1

0
tc−1(1− t)d−c−1

2F1

[
a, b ;

2b ;
zt

]
dt.

Replacing y by 1
2zt in (1.5) and applying the resulting identity to the

2F1 in (2.1), after a little simplification, we obtain

(2.2)

3F2

[
a, b, c ;
d, 2b ;

z

]
=

Γ(d)

Γ(d− c)Γ(c)

·
∫ 1

0
tc−1(1− t)d−c−1 (1− 1

2
zt)−a 2F1

[
1
2a,

1
2a+ 1

2 ;
b+ 1

2 ;

(
zt

2− zt

)2
]
dt.
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Expressing the 2F1 in (2.2) as a series and changing the order of
integration and summation, which is easily seen to be justified due to
the uniform convergence of the series on the interval (0, 1), after a little
algebra, we have

(2.3)

3F2

[
a, b, c;
d, 2b ;

z

]
=

Γ(d)

Γ(d− c)Γ(c)

·
∞∑
n=0

( 1
2a)n ( 1

2a+ 1
2 )n

(b+ 1
2 )n n!

(z
2

)2n ∫ 1

0

tc+2n−1(1− t)d−c−1
(

1− 1

2
zt

)−(a+2n)

dt.

Using (1.6) to evaluate the integral in (2.3), after a little simplifica-
tion, we get

(2.4)

3F2

[
a, b, c ;
d, 2b ;

z

]
=

∞∑
n=0

( 1
2a)n ( 1

2a+ 1
2 )n (c)2n

(b+ 1
2 )n (d)2n n!

(z
2

)2n
2F1

[
a+ 2n, c+ 2n ;

d+ 2n ;

z

2

]
.

Interchanging b and c and taking d = 1
2(a+ b+ 1) in (2.4), we have

(2.5)

3F2

[
a, b, c ;

1
2 (a+ b+ 1), 2c ;

z

]
=

∞∑
n=0

( 1
2a)n ( 1

2a+ 1
2 )n (b)2n

(c+ 1
2 )n ( 1

2a+ 1
2b+ 1

2 )2n n!

(z
2

)2n
2F1

[
a+ 2n, b+ 2n ;

1
2 (a+ b+ 1) + 2n ;

z

2

]
.

Taking z = 1 in (2.5) and using (1.7) in the resulting equation, we obtain

(2.6)

3F2

[
a, b, c ;

1
2 (a+ b+ 1), 2c ;

1

]
=

∞∑
n=0

( 1
2a)n ( 1

2a+ 1
2 )n (b)2n

(c+ 1
2 )n ( 1

2a+ 1
2b+ 1

2 )2n n!

(
1

2

)2n 2a+2n Γ( 1
2a+ 1

2b+ 1
2 + 2n)

Γ(b+ 2n)Γ( 1
2a−

1
2b+ 1

2 )

· 2b−a
∫ π/2

0

(cos θ)b+2n−1 (sin θ)
a−b

dθ,

where we used an elementary trigonometric identity: sin θ = 2 sin(θ/2)
cos(θ/2). Applying (1.3) to evaluate the integral in (2.6) and using
Legendre’s duplication formula for the Gamma function (see [10, p. 6,
Eq. (29)]) in the resulting identity, we get
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(2.7)

3F2

[
a, b, c ;

1
2(a+ b+ 1), 2c ;

1

]
=

Γ(12) Γ(12a+ 1
2b+ 1

2)

Γ(12a+ 1
2) Γ(12b+ 1

2)
2F1

[
1
2a,

1
2b ;

c+ 1
2 ;

1

]
,

which, upon using the well known Gauss’s summation theorem (see, e.g.,
[10, p. 64, Eq. (7)]), yields (1.1). This completes the proof of Watson’s
summation theorem (1.1).
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