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STUDY ON TOPOLOGICAL SPACES

WITH THE SEMI-T 1
2
SEPARATION AXIOM

Sang-Eon Han

Abstract. The present paper consists of two parts. Since the re-
cent paper [4] proved that an Alexandroff T0-space is a semi-T 1

2
-

space, the first part studies semi-open and semi-closed structures of
the Khalimsky nD space. The second one focuses on the study of a
relation between the LS-property of (SCn1,l1

k1
×SCn2,l2

k2
, k) relative

to the simple closed ki-curves SCni,li
ki

, i ∈ {1, 2} and its normal k-
adjacency. In addition, the present paper points out that the main
theorems of Boxer and Karaca’s paper [3] such as Theorems 4.4 and
4.7 of [3] cannot be new assertions. Indeed, instead they should be
attributed to Theorems 4.3 and 4.5, and Example 4.6 of [10].

1. Introduction

To study mathematical objects from the viewpoint of computer sci-
ence, applied topology has been rapidly developed and it includes dis-
crete geometry, computational topology, Scott topology, digital topology
and so forth. Besides, low dimensional separation axioms such as T0, T 1

2
,

semi-T 1
2
and so forth have been often used in applied topology support-

ing computer science such as image analysis, image processing because
computers like a finite or at least a locally finite topological structure [1].
The paper [16] established the notions of a semi-open set and a semi-
closed set. Motivated from these notions, the recent paper [4] points
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out that the notion of semi-T 1
2
-separation axiom (see Definition 2) is

very related to both the Alexandroff topological structure and the T0-
separation axiom. The present paper explains that for every mixed point
p in the Khalimsky nD space the singleton {p} is semi-closed so that the
Khalimsky nD space satisfies the semi-T 1

2
-separation axiom [4]. Indeed,

the recent paper [4] studies some properties of a semi-T 1
2
space and its

product property. It turns out that the separation axiom semi-T 1
2
can

play an important role in applied topology such as digital topology and
domain theory. For instance, the paper [4] proves that Alexandroff T0-
spaces are semi-T 1

2
spaces and further, the product and the hereditary

property of a semi-T 1
2
space was also studied. Even though the paper

[4] referred to the semi-T 1
2
structure of the Khalimsky nD space, the

present paper investigates semi-open and semi-closed structures of the
Khalimsky nD space.

The paper [10] studied the product property of two digital covering
maps in terms of the LS-property of a digital product which can play an
important role in digital covering and digital homotopy theory. Hence
we shows merits of the LS-property of adjacencies of digital products
which corrects the assertion of the paper [3]. Finally, the present paper

shows a relation between the LS-property of (SCn1,l1
k1

× SCn2,l2
k2

, k) and

a normal k-adjacency of SCn1,l1
k1

× SCn2,l2
k2

.
The rest of the present paper proceeds as follows. Section 2 introduces

basic notions of digital topological spaces including the Khalimsky nD
space. Section 3 investigates semi-open and semi-closed structure of
the the Khalimsky nD space related to the semi-T 1

2
-separation axiom

of the Khalimsky nD space. Section 4 investigates a relation between

the LS-property of (SCn1,l1
k1

× SCn2,l2
k2

, k) and a normal k-adjacency of

(SCn1,l1
k1

× SCn2,l2
k2

). Section 5 concludes the paper with a summary.
Besides, the section points out that the main theorems of Boxer and
Karaca’s paper [3] such as Theorems 4.4 and 4.7 of [3] cannot be new
assertions because they were already studied in terms of Theorems 4.3
and 4.5, and Example 4.6 of [10].

2. Preliminaries

In applied topology including digital geometry and digital topology
one of the interesting areas is the Khalimsky nD space. The space is
a locally finite topological space and satisfies the separation axiom T0
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instead of a Hausdorff space if n ≥ 2, and T 1
2
if n = 1. In relation to

the study of objects in Zn, we have used many tools from combinato-
rial topology, graph theory, Khalimsky topology and so forth [7, 8, 13].
Motivated from Alexandroff spaces in [1], the Khalimsky nD space was
established [13] and the study includes the papers [4, 13, 14]. For a
subset X ⊂ Zn we denote by (X,Tn

X) a subspace of (Zn, Tn), n ≥ 1.
Let us now review some basic notions and properties of the Khalimsky

nD space. Khalimsky topology can start with the Khalimsky line. More
precisely, Khalimsky line topology on Z is induced by the set {[2n −
1, 2n + 1]Z |n ∈ Z} as a subbase [1] (see also [13]). Namely, the family
of the subset {{2n + 1}, [2m − 1, 2m + 1]Z |m,n ∈ Z} is a basis of
the Khalimsky line topology on Z denoted by (Z, T ). Furthermore, the
product topology on Zn induced by (Z, T ), denoted by (Zn, Tn), is called
the Khalimsky nD space.

Let us now recall the structure of (Zn, Tn). A point x = (x1, x2, · · · ,
xn) ∈ Zn is pure open if all coordinates are odd; and it is pure closed if
each of the coordinates is even [14]. The other points in Zn are called
mixed [14]. In each of the spaces of Figure 1, a black jumbo dot means
a pure open point and further, the symbols � and • mean a pure closed
point and a mixed point, respectively. In relation to the further state-
ment of a pure point and a mixed point, we can say that a point x is
open if SN(x) = {x}, where SN(x) means the smallest neighborhood of
x ∈ Zn. The point x ∈ Zn is called closed if Cl(x) = {x}, where Cl(x)
stands for a closure of the singleton {x}. Especially, for a mixed point
p = (2m, 2n+1) (resp. p = (2m+1, 2n)) in (Z2, T 2) we call the point p
closed-open (resp.open-closed). Thus, for a point p := (x, y) of (Z2, T 2)
we can obtain that SN(p) = {(x − 1, y), p, (x + 1, y)} if p := (x, y) is
closed-open; SN(p) = {(x, y−1), p, (x, y+1)} if p := (x, y) is open-closed
(see the proof of Theorem 3.1).

3. Semi-open and semi-closed structures on the Khalimsky
nD space

Since the notions of semi-open and semi-closed has been often used
in pure and applied topology and further, they are substantially used in
establishing the separation axiom semi-T 1

2
, we need to recall them, as

follows.

Definition 1. [16] Let (X,T ) be a topological space. A subset A
of X is called semi-open if there is an open set O ∈ T such that O ⊂
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A ⊂ Cl(O), where Cl(O) means the closure of the set O. A subset
F ⊂ X is called a semi-closed set of a topological space (X,T ) if X \ F
is semi-open in (X,T ).

The notion of “semi-open” of the subset A in Definition 1 is equiva-
lently represented as follows [16]:

A ⊂ Cl(Int(A)). (3.1)

Besides, the notion of “semi-closed” of the subset A in Definition 1 is
equivalently represented as follows [16]: there exists a closed set F in T
such that

Int(F ) ⊂ A ⊂ F or Int(Cl(A)) ⊂ A. (3.2)

It is well known that the Khalimsky line topology [13] and the Marcus
Wyse topological structure on Z2 [17] satisfies the separation axiom
T 1

2
. Motivated by this approach, the following notion was developed in

[6, 16].

Definition 2. [6] (see also [4]) We say that a topological space (X,T )
satisfies the semi-T 1

2
-separation axiom if every singleton of X is either

semi-open or semi-closed.

We now need to declare that the paper [4] proved that an Alexan-
droff T0 space is a semi-T 1

2
space in the theoretical approach. Then

the Khalimsky nD space was referred as an example. However, in dig-
ital topology since we need the process of the proof per definition, it
is meaningful to study what singletons are semi-closed or semi-open, as
follows:

Theorem 3.1. The singletons generated from mixed points of the
Khalimsky nD space are semi-closed sets supporting the semi-T 1

2
-separation

axiom of (Zn, Tn).

Proof: Let us consider the Khalimsky nD space (Zn, Tn), n ∈ N.
In case n = 1, since there is no mixed point in (Z, T ) and further, each
singleton from the Khalimsky line topological space (Z, T ) is either open
or closed, (Z, T ) obviously satisfies the semi-T 1

2
-separation axiom.

In case n = 2, consider each of the pure closed (resp. the pure open)
points in Z2 denoted by p. Then we can observe that the singleton {p}
is semi-closed (resp. semi-open). To be specific, for a pure open point
p ∈ Z2 the singleton {p} is semi-open because the singleton {p} is open.
Next, for a pure closed point p ∈ Z2 the singleton {p} is semi-closed
because Z2 \ {p} is open in the Khalimsky plane. Let us now prove that
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for every mixed point p ∈ Z2 the singleton {p} is semi-closed instead of
semi-open. Take a mixed point p := (2m− 1, 2n) or p′ := (2m, 2n− 1).
For convenience, consider the point p := (2m − 1, 2n) which is open-
closed. Then we can prove that the singleton {p} is semi-closed. More
precisely, take the set {(2(m−1), 2n), p, (2m, 2n)} including the singleton
{p} (see Figure 1). Then we observe that Z2\{(2(m−1), 2n), p, (2m, 2n)}
is an open set in the Khalimsky plane. Put

Z2 \ {(2(m− 1), 2n), p, (2m, 2n)} := O,

which is open in (Z2, T 2).
Further, we obtain that

O ⊂ Z2 \ {p} ⊂ Cl(O), (3.3)

because Cl(O) is equal to the total set Z2 under (Z2, T 2). Namely, by
(3.3), the singleton {p} is proved semi-closed.
Using the same method as above, we can also prove that for the closed-
open point p′ := (2m, 2n− 1) ∈ Z the singleton {p′} is also semi-closed
under (Z2, T 2). Concretely, for every point p ∈ Z2 it turns out that
the singleton {p} is either semi-open or semi-closed, which implies that
(Z2, T 2) satisfies the semi-T 1

2
-separation axiom.

In case n ≥ 3, using the similar method of the case n = 2, we obtain that
for every pure open point (resp. pure closed point) p ∈ Zn the singleton
{p} is semi-open (resp. semi-closed). In addition, for every mixed point
p ∈ Zn the singleton {p} is proved semi-closed. Thus we obtain that
(Zn, Tn) satisfies the semi-T 1

2
-separation axiom, n ≥ 3.

Meanwhile, in view of the property (3.1), for a mixed point p ∈ Zn the
singleton {p} is not semi-open because Int({p}) is an empty set. �
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Figure 1. Explanation of the semi-closed structure of
mixed points in (Z2, T 2).
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It is well known that a Scott topological space need not have an
Alexandroff topological structure [5].

Let us recall [5] that for a poset (X,≤) an upper set is a subset U of
X with the property that, if x is in U and x ≤ y, then y is in U . As a
dual notion of an upper set we say that a lower set of the poset (X,≤)
is a subset L with the property that, if x is in L and y ≤ x, then y is in
L.

For an arbitrary element z of a poset (X,≤), the smallest lower set
containing z is represented by using a down arrow as ↓ z = {x ∈ X |x ≤
z}. For every z ∈ X take ↓ z. Then, using the family consisting of the
sets X\ ↓ z as a subbase, we can uniquely establish a topology on X,
denoted by Sup [5].

Proposition 3.2. The space (X,Sup) need not be an Alexandroff
topological space.

Proof: We can prove that the space (X,Sup) need not be an Alexan-
droff topological space in terms of the following example. Let us consider
the set [0, 1] which is a proper subset of the set of real numbers. Fur-
ther consider a typical relation “≤”, i.e. “less than or equal” in [0, 1].
Then, for any point x ∈ [0, 1] since we can take ↓ x := [0, x], we can
obtain the set [0, 1]\ ↓ x as a member of a subbase of the topological
space ([0, 1], Sup). Thus the topological space ([0, 1], Sup) cannot have
an Alexandroff topological structure. �

4. Comparison between the LS-property of SCn1,l1
k1

× SCn2,l2
k2

and a normal adjacency of the digital product

In relation to the study of multidimensional spacesX ⊂ Zn (or digital
spaces), let us now recall the k-adjacency relations of Zn as well as some
essential terminology such as a normal k-adjacency, a digital covering
space and so forth. As a generalization of the k-adjacency relations of
2D and 3D digital spaces [15, 18], the k-adjacency relations of Zn were
established in [7] (see also [8]):
For a natural number m where 1 ≤ m ≤ n, two distinct points p =
(p1, p2, ..., pn) and q = (q1, q2, ..., qn) ∈ Zn are called k(m,n)- (briefly,
k-) adjacent if
• there are at most m indices i such that |pi − qi| = 1 and
• for all other indices i, pi = qi.
Concretely, according to the two numbers m,n ∈ N, the k(m,n) (or
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k)-adjacency relations of Zn were represented in [7, 8], as follows (for
more details, see also [9, 11]).

k := k(m,n) =

n−1∑
i=n−m

2n−iCn
i ,where Cn

i =
n!

(n− i)! i!
. (4.1)

For instance, (n,m, k) ∈ {(2, 1, 4), (2, 2, 8); (3, 1, 6), (3, 2, 18), (3, 3, 26);
(4, 1, 8), (4, 2, 32), (4, 3, 64), (4, 4, 80); (5, 1, 10), (5, 2, 50), (5, 3, 130), (5, 4,
210), (5, 5, 242)} [7, 8].

In general, a pair (X, k) is assumed to be a (binary) digital space
(or digital image) with k-adjacency in a quadruple (Zn, k, k̄,X), where
(k, k̄) ∈ {(k, 2n), (2n, 3n − 1)} with k ̸= k̄, k represents an adjacency
relation for X, and k̄ represents an adjacency relation for Zn \X [15].
For {a, b} ⊂ Z with a � b, [a, b]Z = {a ≤ n ≤ b|n ∈ Z} is considered
in (Z, 2, 2, [a, b]Z). However, in this paper we are not concerned with
the k̄-adjacency between two points in Zn \X. For a multi-dimensional
digital space (X, k) and a point x ∈ X ⊂ Zn, the notion of a digital
k-neighborhood of a point x with radius ε ∈ N was established [6, 8]
in such a way: Nk(x0, ε) := {x ∈ X| lk(x0, x) ≤ ε} ∪ {x0}, (2.5) where
lk(x0, x) is the length of a shortest simple k-path from x0 to x in X.

The recent paper [10] studies the Cartesian product property of two
digital coverings in terms of the properties LS and LC . Based on the
product property, the paper further focuses on the study of the Cartesian
product of the universal covering property. Since the present paper
does not concern the property universal, in this section we may study
the Cartesian product property of two digital coverings. To study this
topic, we need to recall the following essential notions such as a digital
covering map [8, 12] and a normal adjacency of a digital product [8].

For digital spaces (X, k1) on Zn1 and (Y, k2) on Zn2 , the paper [8]
develops a k-adjacency of the Cartesian product (or digital product)
X × Y = {(x, y) |x ∈ X, y ∈ Y } ⊂ Zn1+n2 , as follows.

Definition 3. [8] For two digital space (X, k1) on Zn1 , (Y, k2) on
Zn2 , we say that (x, y) ∈ X × Y ⊂ Zn1+n2 is normally k-adjacent to
(x′, y′) ∈ X × Y if and only if

(1) y is equal to y′ and x is k1-adjacent to x′, or
(2) x is equal to x′ and y is k2-adjacent to y′, or
(3) x is k1-adjacent to x′ and y is k2-adjacent to y′.

This k-adjacency of Definition 3 has strong merits of studying digital
continuities of the corresponding products of both continuous maps and
projection maps.



714 Sang-Eon Han

The following simple closed 4- and 8-curves [7, 8] and a simple closed
18- and 26-curves [11] will be often used later in this paper.{

SC2,4
8 := ((0, 0), (1, 1), (2, 0), (1,−1)), and

SC3,6
18 := ((0, 0, 0), (1, 0, 1), (1, 1, 2), (0, 2, 2), (−1, 1, 2), (−1, 0, 1)).

}
(4.2)

Besides, more various cases are shown in the paper [12]. In order to
study product properties of two digital coverings, the LS-property of a
digital product (X1×X2, k) was established [10] (see Definition 4 of the
present paper).

Definition 4. [12] For digital spaces (Xi, ki) in Zni , i ∈ {1, 2}, we
say that the digital product (X1 ×X2, k) has the LS-property (relative
to (Xi, ki)) if each point (ci, dj) ∈ X1×X2 has Nk((ci, dj), 1) ⊂ X1×X2

which is (k, 8)-isomorphic with N8((0, 0), 1) in (Z2, 8).

Even though the paper [10] referred to a relation between a normal
k-adjacency of a digital product and its LS-property, the present paper
proves the assertion more precisely, as follows: Let us now investigate a

relation between a normal k-adjacency on the digital product SCn1,l1
k1

×
SCn2,l2

k2
and the LS-property of this product with some k-adjacency, as

follows:

Proposition 4.1. For two SCni,li
ki

, i ∈ {1, 2} there is a normal k-

adjacency on the digital product SCn1,l1
k1

× SCn2,l2
k2

if and only if the
digital product has the LS-property.

Proof: The paper [10] proved that the digital product (SCn1,l1
k1

×
SCn2,l2

k2
, k) has the LS-property relative to SC

ni,li
ki

if and only ifNk((ci, di),

1) = Nk1(ci, 1)×Nk2(dj , 1). Thus we suffice to prove that for SCn1,l1
k1

:=

(ci)i∈[0,l1−1]Z and SCn2,l2
k2

:= (dj)j∈[0,l2−1]Z the k-adjacency satisfying the
condition

Nk((ci, dj), 1) = Nk1(ci, 1)×Nk2(dj , 1) (4.3)

is equal to the normal k-adjacency of SCn1,l1
k1

× SCn2,l2
k2

. Let us now

assume that for each point (ci, dj) ∈ SCn1,l1
k1

× SCn2,l2
k2

the k-adjacency

SCn1,l1
k1

×SCn2,l2
k2

satisfies the property (4.3). Then the k-adjacency ob-
viously satisfies Definition 3, which implies that a k-adjacency satisfying
the property (4.3) is a normal k-adjacency.

Conversely, with the hypothesis that the digital product (SCn1,l1
k1

×
SCn2,l2

k2
, k) has a normal k-adjacency, let us prove that the k-adjacency
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satisfies the property (4.3). Suppose that the k-adjacency of the digital

product (SCn1,l1
k1

×SCn2,l2
k2

, k) does not satisfy the property (4.3). To be

specific, we may take a point (ci, dj) ∈ SCn1,l1
k1

× SCn2,l2
k2

such that

Nk((ci, dj), 1) ̸= Nk1(ci, 1)×Nk2(dj , 1). (4.4)

In view of (4.4), we can take either

Nk((ci, dj), 1) * Nk1(ci, 1)×Nk2(dj , 1) (4.5)

or

Nk1(ci, 1)×Nk2(dj , 1) * Nk((ci, dj), 1). (4.6)

In case (4.5), the k-adjacency contradicts the property (3) of Definition
3. In case (4.6), the k-adjacency contradicts the property (1) or (2) of
Definition 3. �

Example 4.2. For the digital product SC3,6
18 ×SC2,4

8 , we can observe
an equivalence between a normal k-adjacency on the digital product
SC3,6

18 × SC2,4
8 and the LS-property of SC3,6

18 × SC2,4
8 relative to SC3,6

18

and SC2,4
8 . For instance, we can consider the digital product (SC3,6

18 ×
SC2,4

8 , k), k ∈ {210, 242} guaranteeing Proposition 4.1.

5. Summary

We have proved that every mixed point in the Khalimsky nD space
is semi-closed, which has been substantially used for showing that the
Khalimsky nD space satisfies the axiom semi-T 1

2
. Further, we have in-

vestigated an equivalence between the LS-property (SCn1,l1
k1

×SCn2,l2
k2

, k)

and a normal k-adjacency of (SCn1,l1
k1

×SCn2,l2
k2

). This approach can play
an important role in applied topology and digital topology including var-
ious kinds of product properties of digital spaces.
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