Honam Mathematical J. 35 (2013), No. 4, pp. 729-738
http://dx.doi.org/10.5831 /HMJ.2013.35.4.729

THE CAPABILITY OF LOCALIZED NEURAL
NETWORK APPROXIMATION

NauMwoo Haum! axnp BuMm IL HonG*

Abstract. In this paper, we investigate a localized approximation
of a continuously differentiable function by neural networks. To
do this, we first approximate a continuously differentiable function
by B-spline functions and then approximate B-spline functions by
neural networks. Our proofs are constructive and we give numerical
results to support our theory.

1. Introduction

Many mathematicians ([2], [4], [5], [6], [7], [9], [10], [11]) have been
studied the neural network approximation in recent years. In [1], Chui,
Li and Mhaskar pointed out the limitation of approximation by neu-
ral network with one hidden layer. Hahm and Hong [3] suggested a
localized neural network approximation to cure this problem but the
approximation algorithm was not constructive.

The motivation of localized approximation is explained as follows.
Assume that we have n subintervals (not necessarily equal length) par-
titioning [0, 1]. But for simplicity, let x; = % fori=0,1,2,...,n. Then
[0, 1] is divided into n subintervals {[z;—1,z;] : ¢ = 1,2,...,n}. If a tar-
get function f is continuously differentiable on [0, 1] and supp(f) C [0, 1],
then f is mainly nonzero over at most [l - n] + 2 subintervals, where I
is the length of supp(f) and [-] denotes the greatest integer function.
Note that we may assume that f is nonzero over n subintervals when
[l-n]+2 >n. Then we approximate f by neural networks locally with
a small number of neurons on each subinterval where f is nonzero. If
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f changes on a small part of the interval, this localized method has an
advantage that we need to retrain neural networks related to that part

only, not the whole interval.
Note that a neural network with one hidden layer is of the form

(1.1) Zcid((lil‘—l-bi)
i=1

where the weight a;, the threshold b; and ¢; are real numbers for ¢ =

1,2,...,n. The following functions are examples of activation functions.
(1.2) The squashing function : o(z) = (1 4+ e %)}

(1.3) The Gaussian function : o(z) = e’

(1.4) Thin plate splines : o(z) = |z[*7!, ¢eN

In [8], Kalman and Kwasny suggested the squashing function as an acti-
vation function since the squashing function was useful in hardware im-
plementations of back propagation and related training algorithm. Thus
we choose the squashing function as an activation function of localized
neural networks.

2. Main results

Let m € NU {0}. We introduce B-spline of order m as Schumaker
[12] suggested. The B-spline of order 0 is defined by

0 if z<0
(2.1) Bo(z) :={ 1 if 0<z<1
0 if 1<g.
Recursively, By, is defined by
1
(2.2) B (z) := / Bp—1(z — t)dt.
0

Then By, has a compact support [0,m + 1] with |[B||og,jo,m+1] < 1 and
is m — 1 times continuously differentiable.

Let C1*[0, 1] be the set of all continuously differentiable functions f
such that supp(f) is a proper subset of [0, 1]. First, we approximate a
function in C1*[0, 1] by B-spline functions.
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Theorem 2.1. Let f € C'*[0,1] and let n € N. For a given m € N,
we define, for z € [0, 1],

(2.3) Tfmm () = nz (/

Then we get

c1
(2.4) I1f = Ttmomnlloo,jo,1) < o

i+1

) By (nz — k).

where ¢y is a constant depending on f.

Proof. We extend f on [—2,2] by f(z) = 0on [-2,0]U[1,2]. Then fis
continuously differentiable on [—2, 2] and | f(z)— f(y )\ = |f (n)||z—y] for
all z,y € [~2,2] by the Mean Value Theorem. Since f (z) is continuous

n [—2,2], there exists a positive constant ¢; such that |f (z)| < ¢; for

all z € [-2,2]. Thus

(2.5) @)= fly) <2

n
for any x,y € [-2,2] with |z —y| < % By the extension of f, we have

(2.6) /Zn f(s)ds =0

for i = —m —1,—m,...,—1. In addition, by the property of B,,, we
obtain that
n—1
(2.7) > Bp(naz—i)=1.
i=—m—1

For x € [0, 1], we have, by (2.5), (2.6) and (2.7),
f(z )—Tf,mn(ﬂ?)l

(/ £(s )Bmm:c—i)\
n—1

= |f(a;)—n Z (/inf(s)ds> Bm(nx—i)‘

i=—m—1

> ( JRCE f(S)\ds> B = )]

i=—m—1 n

(2.8) -

IN

n
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n—1
c .
< El Z By (nz — i)
1=—m—1
on
In all, we have
1
(2.9) I1f = Trmmlloc,fo,1) < P
Thus we complete the proof. ]
Note that B,,(x) is a piecewise polynomial of degree m. Hence
m
(2.10) B (z) = Zaivjxj
j=0
for x € [% %] and i = 0,1,2,...,n — 1. Since the squashing function

o(x) = (1+e %)~! is a monotone function on R, there exists b € R such
that (™ (b) # 0 for all n € N by the Baire’s category theorem.

Theorem 2. 2 Let o be the squashing function and let b be a point
in R such that o™ (b) # 0 for all n € N. Suppose that

m

1 3 (]
(2.11) Npp(z) == Qi j—— Y (—1)77P o(phz +b),
h jz;) hio)(b) pzz:o <p) b

where a; j’s are the coefficients in (2.10), h > 0 and j = 0,1,...,m
Then, for any € > 0, the neural network Ny, , , defined by

(2.12) Nf (@ _nz</
satisfies

(2’13) |’Tf7m7n - Nf,m,n,h”oo’[o’l} < €
for sufficiently small h > 0.

i+1

) Ny n(nx — i)

Proof. Since f is bounded on [0, 1], we have

ﬁ F(s)ds <n/m Mds = M

for some M > 0 and i = 0,1,2,...,n — 1. By the divided difference
formula, we have

(2.14)

o(hz +b) —o(b) I
ho_/ (b) 007[0,1]

(2.15) lz — = O(h).
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Inductively, we get

T

1

2.1 M

(—1)" (") o(gha + )l 0.1 = O(h)
- (q> q [0,1]

q=

for r € N. Thus we have

(2.17) ||Tf,m,n - Nf,mmﬁ”oo,[O,l]

n—1 %
= ln)_ (/ f(S)dS> (Bm(n - =i) = Nin,p(n - =1))llo0,j0,1)

1=0 n

n

n—1
< M| (Bm(n - —i) = Nun(n =) |loo o)
=0

= O(h)<e
for sufficiently small h > 0. Thus we complete the proof. O

By Theorem 2.1 and Theorem 2.2, we obtain the following theorem
that is the main result of this paper.

Theorem 2.3. Let o be the squashing function and let b be a point
in R such that o™ (b) # 0 for all n € N. Assume that f € C**[0,1] and
m € N. Then, for h > 0, there exists a neural network Ny, defined
by

n—1 itl
(2.18) Ntmnn(z) = nz (/ f(s)ds) Ny p(nx — 1)
i=0

i
n

satisfies

(2.19) f = Nfmnn

C1
’007[0,1] < E?

where c; is a constant depending on f.
Proof. Let € > 0 be given. By Theorem 2.1 and 2.2, we get

I1f = Ntmmhlloo,0,1]
(2.20) < ||f - Ttmn

lo0,0,1] T T .mm = Npmon,hl oo o,1]
C1

i + 6,

n

where c¢; is a constant depending on f. Since € > 0 is arbitrary, we
complete the proof. ]



734 Nahmwoo Hahm and Bum Il Hong
3. Numerical Results

In this section, we give numerical results implemented by MATHE-
MATICA in order to justify our theory. We select

0 if 0< <1

i r< =

- 3

. 9 1 2

(3.1) f(@) =3 sin®(3r(z — <)) if §§x<§
2

as a target function. Then f is continuously differentiable on [0, 1] and
supp(f) = (1/3,2/3). First, we approximate f by a linear combination
of the B-splines function Bs(x). A tedious calculation gives

0 if x <0
2
% if 0<z<1
1
(3.2) By (z) = 5(—2$2+6$—3) if 1<x<?2
1
5(952—695+9) if 2<z<3
0 if 3 <.

By Theorem 2.1, we have

n—1 %
(3.3) Ton(z) =1 ( / f(t)dt) By(na — 1)
=0 n

n

for n € N.

Figure 1 shows that the linear combination of B-spline function 75,
approximates the target function well when n is large as we expected
in Theorem 2.1. In fact, our numerical computation shows that the
maximum errors between the target function f and 7o g, f and 75 32, and
f and T3 128 are 0.725010, 0.281784 and 0.0734274, respectively. Thus
Theorem 2.1 is justified numerically since the maximum errors decrease
as n increases. Moreover, Theorem 2.1 theoretically shows that the order
of accuracy is 1. The numerical order of accuracy is estimated by

1 Hf—T2,n1 ||oo,[0,1]

Order — Hf_TQJLQ”oo,[O,l]

log (n1/n2)
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— target function

— T28%x)
T2,32(x)
- T2,128(x)

F1GURE 1. Target function and B-splines

where n/s are the number of subintervals of [0, 1] increased by 4 in our
case and the following table verifies that our numerical approximation
errors tend to the order of accuracy 1 asymptotically.

n; Error Order
8 0.725010

32 0.281784 0.69
128 0.0734274 0.97

Now, we approximate B-spline function By(x) in T3, by neural net-
works with the squashing activation function. For h > 0, we replace x
by
hz+1)—o(1)

ho' (1)

(3.4) Dy(a) = 2

and replace z2 by

_ 0(2hx +1) —20(hx + 1) + J(l).

3.5 D =
( ) 2(1’) h20ﬂ<1)
By Theorem 2.2, we construct a neural network as
0 if x <0
DQQ(:C) fo<zer<1
1
(3.6) Nop(z) = 5(=2Ds(x) +6D1(x) =3) if 1< <2
1
i(Dg(x) —6D1(z)+9) if2<x<3
0 if 3<u.
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0.7f

0.6

\

\ — B2(x)
El - neura network(h=0.001)
---- neura nework(h=0.00001)

04F /

03

0.2

01f

00—t

FIGURE 2. B-spline and neural networks

Figure 2 shows that neural networks approximate B well when we
use sufficiently small A > 0. In fact, numerical computation shows that
the maximum errors between By and N2 001, and Bs and N2 g.0o001 are
0.015545 and 0.000110858, respectively.

Finally, we approximate f numerically by neural networks Ny ,, , in
the cases of Nf,2,n,0.001 and Nf,Q,n,O.OOOOl forn = 8, 32, 128.

10FT

08

— target function
06
— neura network(n=8)

04 - neural network(n=32)
-—-- neura network(n=128)

02

0.0

FIGURE 3. Target function and neural networks (h = 0.001)

Figure 3 and Figure 4 show that neural networks approximate f well
when we use sufficiently small A > 0. Numerical computation shows
that the maximum errors between the target function f and Nyagp, f
and Nyo 301, and f and Ny 198 are 0.725014, 0.286168 and 0.0763111,
respectively, when h = 0.001. Similarly, the maximum errors between
the target function f and Nyogp, f and Nyo3ap, and f and Nyg 1284
are 0.725012,0.282494 and 0.0734536, respectively, when A = 0.00001.
The following table verifies that our numerical approximation errors tend
to the order of accuracy 1 asymptotically in the cases of h; = 0.001 and
ho = 0.00001 as theoretically shown in Theorem 2.3.
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— target function
— neura network(n=8)
-- neural network(n=32)
-~ neural network(n=128)
FIGURE 4. Target function and neural networks (h = 0.00001)
n; Error (hy) Order (hy) Error (hs) Order (h2)
8 0.725014 0.725012
32 0.286168 0.67 0.282494 0.68
128 0.0763111 0.95 0.0734536 0.97
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