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THE CAPABILITY OF LOCALIZED NEURAL

NETWORK APPROXIMATION

Nahmwoo Hahm† and Bum Il Hong∗

Abstract. In this paper, we investigate a localized approximation
of a continuously differentiable function by neural networks. To
do this, we first approximate a continuously differentiable function
by B-spline functions and then approximate B-spline functions by
neural networks. Our proofs are constructive and we give numerical
results to support our theory.

1. Introduction

Many mathematicians ([2], [4], [5], [6], [7], [9], [10], [11]) have been
studied the neural network approximation in recent years. In [1], Chui,
Li and Mhaskar pointed out the limitation of approximation by neu-
ral network with one hidden layer. Hahm and Hong [3] suggested a
localized neural network approximation to cure this problem but the
approximation algorithm was not constructive.

The motivation of localized approximation is explained as follows.
Assume that we have n subintervals (not necessarily equal length) par-
titioning [0, 1]. But for simplicity, let xi =

i
n for i = 0, 1, 2, . . . , n. Then

[0, 1] is divided into n subintervals {[xi−1, xi] : i = 1, 2, . . . , n}. If a tar-
get function f is continuously differentiable on [0, 1] and supp(f) ⊂ [0, 1],
then f is mainly nonzero over at most [l · n] + 2 subintervals, where l
is the length of supp(f) and [·] denotes the greatest integer function.
Note that we may assume that f is nonzero over n subintervals when
[l · n] + 2 ≥ n. Then we approximate f by neural networks locally with
a small number of neurons on each subinterval where f is nonzero. If
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f changes on a small part of the interval, this localized method has an
advantage that we need to retrain neural networks related to that part
only, not the whole interval.

Note that a neural network with one hidden layer is of the form

(1.1)

n∑
i=1

ciσ(aix+ bi)

where the weight ai, the threshold bi and ci are real numbers for i =
1, 2, . . . , n. The following functions are examples of activation functions.

(1.2) The squashing function : σ(x) = (1 + e−x)−1

(1.3) The Gaussian function : σ(x) = e−x2

(1.4) Thin plate splines : σ(x) = |x|2q−1, q ∈ N

In [8], Kalman and Kwasny suggested the squashing function as an acti-
vation function since the squashing function was useful in hardware im-
plementations of back propagation and related training algorithm. Thus
we choose the squashing function as an activation function of localized
neural networks.

2. Main results

Let m ∈ N ∪ {0}. We introduce B-spline of order m as Schumaker
[12] suggested. The B-spline of order 0 is defined by

(2.1) B0(x) :=


0 if x < 0

1 if 0 ≤ x < 1

0 if 1 ≤ x.

Recursively, Bm is defined by

(2.2) Bm(x) :=

∫ 1

0
Bm−1(x− t)dt.

Then Bm has a compact support [0,m+1] with ||Bm||∞,[0,m+1] ≤ 1 and
is m− 1 times continuously differentiable.

Let C1,∗[0, 1] be the set of all continuously differentiable functions f
such that supp(f) is a proper subset of [0, 1]. First, we approximate a
function in C1,∗[0, 1] by B-spline functions.
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Theorem 2.1. Let f ∈ C1,∗[0, 1] and let n ∈ N. For a given m ∈ N,
we define, for x ∈ [0, 1],

(2.3) Tf,m,n(x) := n

n−1∑
i=0

(∫ i+1
n

i
n

f(s)ds

)
Bm(nx− k).

Then we get

(2.4) ||f − Tf,m,n||∞,[0,1] ≤
c1
n
,

where c1 is a constant depending on f .

Proof. We extend f on [−2, 2] by f(x) = 0 on [−2, 0]∪[1, 2]. Then f is

continuously differentiable on [−2, 2] and |f(x)−f(y)| = |f ′
(η)||x−y| for

all x, y ∈ [−2, 2] by the Mean Value Theorem. Since f
′
(x) is continuous

on [−2, 2], there exists a positive constant c1 such that |f ′
(x)| ≤ c1 for

all x ∈ [−2, 2]. Thus

(2.5) |f(x)− f(y)| ≤ c1
n

for any x, y ∈ [−2, 2] with |x− y| ≤ 1
n . By the extension of f , we have

(2.6)

∫ i+1
n

i
n

f(s)ds = 0

for i = −m − 1,−m, . . . ,−1. In addition, by the property of Bm, we
obtain that

(2.7)
n−1∑

i=−m−1

Bm(nx− i) = 1.

For x ∈ [0, 1], we have, by (2.5), (2.6) and (2.7),

|f(x)− Tf,m,n(x)|

=
∣∣f(x)− n

n−1∑
i=0

(∫ i+1
n

i
n

f(s)ds

)
Bm(nx− i)

∣∣(2.8)

=
∣∣f(x)− n

n−1∑
i=−m−1

(∫ i+1
n

i
n

f(s)ds

)
Bm(nx− i)

∣∣
≤

∣∣n n−1∑
i=−m−1

(∫ i+1
n

i
n

|f(x)− f(s)|ds

)
Bm(nx− i)

∣∣
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≤ c1
n

n−1∑
i=−m−1

Bm(nx− i)

=
c1
n
.

In all, we have

(2.9) ||f − Tf,m,n||∞,[0,1] ≤
c1
n
.

Thus we complete the proof.

Note that Bm(x) is a piecewise polynomial of degree m. Hence

(2.10) Bm(x) =

m∑
j=0

ai,jx
j

for x ∈ [ in ,
i+1
n ] and i = 0, 1, 2, . . . , n − 1. Since the squashing function

σ(x) = (1+ e−x)−1 is a monotone function on R, there exists b ∈ R such

that σ(n)(b) ̸= 0 for all n ∈ N by the Baire’s category theorem.

Theorem 2.2. Let σ be the squashing function and let b be a point
in R such that σ(n)(b) ̸= 0 for all n ∈ N. Suppose that

(2.11) Nm,h(x) :=

m∑
j=0

ai,j
1

hjσ(j)(b)

j∑
p=0

(−1)j−p

(
j
p

)
σ(phx+ b),

where ai,j ’s are the coefficients in (2.10), h > 0 and j = 0, 1, . . . ,m.
Then, for any ϵ > 0, the neural network Nf,m,n,h defined by

(2.12) Nf,m,n,h(x) := n

n−1∑
i=0

(∫ i+1
n

i
n

f(s)ds

)
Nm,h(nx− i)

satisfies

(2.13) ||Tf,m,n −Nf,m,n,h||∞,[0,1] < ϵ

for sufficiently small h > 0.

Proof. Since f is bounded on [0, 1], we have

(2.14)

∣∣∣∣∣n
∫ i+1

n

i
n

f(s)ds

∣∣∣∣∣ ≤ n

∫ i+1
n

i
n

Mds = M

for some M > 0 and i = 0, 1, 2, . . . , n − 1. By the divided difference
formula, we have

(2.15) ||x− σ(hx+ b)− σ(b)

hσ′(b)
||∞,[0,1] = O(h).
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Inductively, we get

(2.16) ||xr − 1

hrσ(r)(b)

r∑
q=0

(−1)r−q

(
r
q

)
σ(qhx+ b)||∞,[0,1] = O(h)

for r ∈ N. Thus we have

||Tf,m,n −Nf,m,n,h||∞,[0,1](2.17)

= ||n
n−1∑
i=0

(∫ i+1
n

i
n

f(s)ds

)
(Bm(n · −i)−Nm,h(n · −i))||∞,[0,1]

≤ M ||
n−1∑
i=0

(
Bm(n · −i)−Nm,h(n · −i)

)
||∞,[0,1]

= O(h) < ϵ

for sufficiently small h > 0. Thus we complete the proof.

By Theorem 2.1 and Theorem 2.2, we obtain the following theorem
that is the main result of this paper.

Theorem 2.3. Let σ be the squashing function and let b be a point
in R such that σ(n)(b) ̸= 0 for all n ∈ N. Assume that f ∈ C1,∗[0, 1] and
m ∈ N. Then, for h > 0, there exists a neural network Nf,m,n,h defined
by

(2.18) Nf,m,n,h(x) := n

n−1∑
i=0

(∫ i+1
n

i
n

f(s)ds

)
Nm,h(nx− i)

satisfies

(2.19) ||f −Nf,m,n,h||∞,[0,1] ≤
c1
n
,

where c1 is a constant depending on f .

Proof. Let ϵ > 0 be given. By Theorem 2.1 and 2.2, we get

||f −Nf,m,n,h||∞,[0,1]

≤ ||f − Tf,m,n||∞,[0,1] + ||Tf,m,n −Nf,m,n,h||∞,[0,1](2.20)

<
c1
n

+ ϵ,

where c1 is a constant depending on f . Since ϵ > 0 is arbitrary, we
complete the proof.
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3. Numerical Results

In this section, we give numerical results implemented by MATHE-
MATICA in order to justify our theory. We select

(3.1) f(x) =


0 if 0 ≤ x <

1

3

sin2
(
3π(x− 1

3
)
)

if
1

3
≤ x <

2

3

0 if
2

3
≤ x < 1

as a target function. Then f is continuously differentiable on [0, 1] and
supp(f) = (1/3, 2/3). First, we approximate f by a linear combination
of the B-splines function B2(x). A tedious calculation gives

(3.2) B2(x) =



0 if x < 0

x2

2
if 0 ≤ x < 1

1

2
(−2x2 + 6x− 3) if 1 ≤ x < 2

1

2
(x2 − 6x+ 9) if 2 ≤ x < 3

0 if 3 ≤ x.

By Theorem 2.1, we have

(3.3) T2,n(x) = n

n−1∑
i=0

(∫ i+1
n

i
n

f(t)dt

)
B2(nx− i)

for n ∈ N.

Figure 1 shows that the linear combination of B-spline function T2,n

approximates the target function well when n is large as we expected
in Theorem 2.1. In fact, our numerical computation shows that the
maximum errors between the target function f and T2,8, f and T2,32, and
f and T2,128 are 0.725010, 0.281784 and 0.0734274, respectively. Thus
Theorem 2.1 is justified numerically since the maximum errors decrease
as n increases. Moreover, Theorem 2.1 theoretically shows that the order
of accuracy is 1. The numerical order of accuracy is estimated by

order = −
log

∥f−T2,n1∥∞,[0,1]

∥f−T2,n2∥∞,[0,1]

log (n1/n2)
,
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Figure 1. Target function and B-splines

where n′
is are the number of subintervals of [0, 1] increased by 4 in our

case and the following table verifies that our numerical approximation
errors tend to the order of accuracy 1 asymptotically.

ni Error Order
8 0.725010
32 0.281784 0.69
128 0.0734274 0.97

Now, we approximate B-spline function B2(x) in T2,n by neural net-
works with the squashing activation function. For h > 0, we replace x
by

(3.4) D1(x) :=
σ(hx+ 1)− σ(1)

hσ′(1)

and replace x2 by

(3.5) D2(x) :=
σ(2hx+ 1)− 2σ(hx+ 1) + σ(1)

h2σ′′(1)
.

By Theorem 2.2, we construct a neural network as

(3.6) N2,h(x) =



0 if x < 0

D2(x)

2
if 0 ≤ x < 1

1

2
(−2D2(x) + 6D1(x)− 3) if 1 ≤ x < 2

1

2
(D2(x)− 6D1(x) + 9) if 2 ≤ x < 3

0 if 3 ≤ x.
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Figure 2. B-spline and neural networks

Figure 2 shows that neural networks approximate B2 well when we
use sufficiently small h > 0. In fact, numerical computation shows that
the maximum errors between B2 and N2,0.001, and B2 and N2,0.00001 are
0.015545 and 0.000110858, respectively.

Finally, we approximate f numerically by neural networks Nf,2,n,h in
the cases of Nf,2,n,0.001 and Nf,2,n,0.00001 for n = 8, 32, 128.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

target function

neural networkHn=8L

neural networkHn=32L

neural networkHn=128L

Figure 3. Target function and neural networks (h = 0.001)

Figure 3 and Figure 4 show that neural networks approximate f well
when we use sufficiently small h > 0. Numerical computation shows
that the maximum errors between the target function f and Nf,2,8,h, f
and Nf,2,32,h, and f and Nf,2,128,h are 0.725014, 0.286168 and 0.0763111,
respectively, when h = 0.001. Similarly, the maximum errors between
the target function f and Nf,2,8,h, f and Nf,2,32,h, and f and Nf,2,128,h

are 0.725012, 0.282494 and 0.0734536, respectively, when h = 0.00001.
The following table verifies that our numerical approximation errors tend
to the order of accuracy 1 asymptotically in the cases of h1 = 0.001 and
h2 = 0.00001 as theoretically shown in Theorem 2.3.
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Figure 4. Target function and neural networks (h = 0.00001)

ni Error (h1) Order (h1) Error (h2) Order (h2)
8 0.725014 0.725012
32 0.286168 0.67 0.282494 0.68
128 0.0763111 0.95 0.0734536 0.97
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