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LOCAL SPLITTING PROPERTIES OF

ENDOMORPHISM RINGS OF PROJECTIVE MODULES

Sang Cheol Lee

Abstract. This paper deals with the unit groups of the endomor-
phism rings of projective modules over polynomial rings and further
over formal power series rings. A normal subgroup of the unit group
is defined and discussed. The local splitting properties of elements
of endomorphism rings of projective modules over polynomial rings
are given.

1. Introduction

Throughout this paper every ring will be a commutative ring with
identity, unless otherwise indicated, and every module will be a finitely
generated unitary module.

Many algebraists, such as Quillen [5], Suslin, Mandal [4], Bhatwadekar,
Sridharan [1], Ischebeck, and Ravi Rao [3], have worked on finitely gen-
erated projective modules over commutative Noetherian rings.

Let R be a (not necessarily commutative) ring and let x be an in-
determinate. Consider the polynomial ring R[x]. In section 2, (1 +
xR[x])∗ is defined. So, if P is a projective module over a ring A, then
(id+ xEndA[x](P [x]))

∗ is constructed. This is a normal subgroup of the
unit group of endomorphism rings of a projective module over a poly-
nomial ring. If (A,m) is a local ring with dim(A) ≥ µ(m), then we show
that (id+xEndA[x](P [x]))

∗ is a normal subgroup of SLA[x](P [x]). Also,
we will show that under these conditions the similar conclusion can be
drawn for the ring of formal power series.

In section 3, let P be a projective A-module. Let s1, s2 ∈ A be such
that As1 + As2 = A. Then we use the splitting lemma of Quillen to
show that every element of (idPs1s2

+ xEndAs1s2 [x]
(Ps1s2 [x]))

∗ has two
decompositions. Finally, we generalize the result to Theorem 3.4.

Received October 14, 2013. Accepted November 22, 2013.
2010 Mathematics Subject Classification. Primary 13C10, 13B25, 13B30.
Key words and phrases. projective module, endomorphism ring, polynomial ring.



748 Sang Cheol Lee

2. A Normal Subgroup of the Unit Group

Let R be a (not necessarily commutative) ring with identity. An
element of R is called a unit if it has a multiplicative inverse. Let U(R)
be the set of all units of R. Then (U(R), · ) forms a group, which is
called the unit group of the ring R.

We now consider the polynomial ring R[x] over a ring R with an
indeterminate x. Then U(R) ⊆ U(R[x]). However, the converse does
not hold, in general. For example, (1 + 2x)2 = 1 in Z4[x], so 1 +
2x ∈ U(Z4[x])\U(Z4). Hence U(Z4) ( U(Z4[x]). (Of course, if R is an
integral domain, then it is well-known that U(R[x]) = U(R).)

For a ring R, define a map φ : U(R[x]) → U(R) by φ(f(x)) = f(0),
where f(x) ∈ U(R[x]). Then φ is a group epimorphism with

Ker(φ) = {f(x) ∈ U(R[x]) | f(0) = 1}.
Hence {f(x) ∈ U(R[x]) | f(0) = 1} is a normal subgroup of the unit
group U(R[x]) of the polynomial ring R[x] and

U(R[x])/{f(x) ∈ U(R[x]) | f(0) = 1} ∼= U(R).

Write 1+xR[x] = {1+xg(x) | g(x) ∈ R[x]}. Then the following inclusion
does not hold in general:

1 + xR[x] ⊆ U(R[x]).

For example, let Z be the ring of integers. Consider a polynomial 1+2x ∈
Z[x]. Then 1+2x has no inverse in the polynomial ring Z[x]. (Of course,
it has an inverse 1+ (−2)x+4x2 + · · ·+ (−2)nxn + · · · · · · in the formal
power series ring Z[[x]].) For our convenience, write

(1 + xR[x])∗ = (1 + xR[x]) ∩ U(R[x]).

Notice that (1 + xR[x])∩U(R[x]) = {f(x) ∈ U(R[x]) | f(0) = 1}. Then
(1 + xR[x])∗ = {f(x) ∈ U(R[x]) | f(0) = 1}. Hence (1 + xR[x])∗ is a
normal subgroup of the unit group U(R[x]) and

U(R[x])/(1 + xR[x])∗ ∼= U(R).

Let A be a ring. For an A-module M , we write M [x] for M ⊗A A[x].
Let P be a projective A-module. Since the identity of the endomorphism
ring EndA(P ) is the identity map idP : P → P , we can get a normal
subgroup (idP +xEndA(P )[x])

∗ of the unit group U(EndA(P )[x]) of the
polynomial ring EndA(P )[x] over the endomorphism ring EndA(P ). By
[3, Lemma 4.3.5] there exists a ring isomorphism

φ : EndA(P )[x] → EndA[x](P [x]).
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We can restrict the isomorphism φ to the unit group U(EndA(P )[x]) to
get a group isomorphism

φ|U(EndA(P )[x]) : U(EndA(P )[x]) → U(EndA[x](P [x])).

The normal subgroup (idP+xEndA(P )[x])
∗ of the unit group U(EndA(P )

[x]) corresponds to a normal subgroup (idP [x] + xEndA[x](P [x]))
∗ of

the unit group U(EndA[x](P [x])) under the isomorphism φ|U(EndA(P )[x]).
The latter group is the automorphism group AutA[x](P [x]). Hence

AutA[x](P [x])/(idP [x] + xEndA[x](P [x]))
∗ ∼= U(EndA(P )) = AutA(P )

and

(idP [x] + xEndA[x](P [x]))
∗

= {idP [x] + xβ(x) | β(x) ∈ EndA[x](P [x])} ∩ U(EndA[x](P [x]))

= {α(x) ∈ EndA[x](P [x]) | α(0) = idP } ∩AutA[x](P [x])

= {α(x) ∈ AutA[x](P [x]) | α(0) = idP }.
Lemma 2.1. Let A be a ring. Let P be a projective A-module

with finite rank. Then for every element α(x) ∈ (id+ xEndA[x](P [x]))
∗

there exists a nilpotent polynomial f(x) in A[x] such that det(α(x)) =
1 + xf(x) in A[x].

Proof. Let P be a projective A-module of rank n <∞. Then P [x] is
a projective A[x]-module of rank n <∞. Then

AutA[x](P [x]) = {α(x) ∈ EndA[x](P [x]) | det(α(x)) ∈ U(A[x])}
and

(id+ xEndA[x](P [x]))
∗ = {α(x) ∈ AutA[x](P [x]) | α(0) = id}.

Now let α(x) ∈ (id + xEndA[x](P [x]))
∗. Since det(α(x)) ∈ U(A[x]),

there exists h(x) ∈ A[x] such that (det(α(x)))h(x) = 1. Since α(0) = id,
we have det(α(0)) = 1. Hence det(α(x)) = 1 + xf(x) for some f(x) ∈
A[x]. Also, h(0) = det(α(0))h(0) = 1, so h(x) = 1 + xg(x) for some
g(x) ∈ A[x]. 1 = (det(α(x)))h(x) = (1 + xf(x))(1 + xg(x)). So, we get{

f(x) + g(x) = 0,
f(x)g(x) = 0

From these equations, we can get f(x)2 = 0.

We adopt the notation µ(M) in [4, Notations 4.1.1] in the following.

Theorem 2.2. Let P be a projective A-module with finite rank. If
(A,m) is a local ring with dim(A) ≥ µ(m), then (id+ xEndA[x](P [x]))

∗

is a normal subgroup of SLA[x](P [x]).
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Proof. By our assumption and [6, Lemma 4.12],

dim(A) ≥ µ(m) = dimA/m(m/m
2) ≥ dim(A).

So, dim(A) = dimA/m(m/m
2). Hence A is a regular local ring. By

[3, Proposition 8.2.2], A is an integral domain. So, A[x] is an integral
domain. Therefore the result follows from Lemma 2.1.

For an A-module M , we write M [[x]] for M ⊗A A[[x]].

Theorem 2.3. Let A be a ring. Let P be a projective A-module
with finite rank. Then the following are true.

(1) (id+ xEndA[[x]](P [[x]]))
∗ = {α(x) ∈ AutA[[x]](P [[x]]) | α(0) = id}.

(2) (id+xEndA[[x]](P [[x]]))
∗ is a normal subgroup of AutA[[x]](P [[x]]).

(3) If (A,m) is a local ring with dim(A) ≥ µ(m), then

(id+ xEndA[[x]](P [[x]]))
∗

is normal in SLA[[x]](P [[x]]).

Proof. It is easy to see that (1) and (2) are true. (3) If A is an integra
domain, then so is A[[x]]. As in the proof of Theorem 2.2, we can show
that (3) is true.

3. Local Splitting Properties of Endomorphism Rings of Pro-
jective Modules over Polynomial Rings

Daniel Quillen proved the following lemma in [5, Lemma 1]. This is
called the Quillen splitting lemma (see [4, Lemma 3.1.1, Lemma 4.3.1].)

Lemma 3.1. Let R be an algebra over a ring A, let f ∈ A, and let
θ ∈ (1 + xRf [x])

∗. Then there exists an integer k ≥ 0 such that for any

g1, g2 ∈ A with g1 − g2 ∈ fkA, there exists ψ ∈ (1 + xR[x])∗ such that

ψf (x) = θ(g1x)θ(g2x)
−1.

The following result is a local version of the Quillen splitting lemma
above. We can see its proof in [5, Theorem 1] and [3, Lemma 4.3.8], but
we use Lemma 3.1 to prove it. We state the proof for our records. The
matrix form of Theorem 3.2 (1) is given in [2, Lemma 2.5.1].

In the localization As of a ring A at T = {1, s, s2, · · · , sn, · · · }, we
sometimes write an element 1 of T by s0 for our clarification.

Theorem 3.2. Let P be a projective module over a ring A and let
s1, s2 ∈ A be such that As1+As2 = A. Let σ(x) ∈ AutAs1s2 [x]

(Ps1s2 [x])

such that σ(0) = idPs1s2
. Then σ(x) splits in two ways:
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(1) There exist α1(x) ∈ AutAs1 [x]
(Ps1 [x]) and α2(x) ∈ AutAs2 [x]

(Ps2 [x])

with α1(0) = idPs1
and α2(0) = idPs2

, respectively, such that

σ(x) = α1(x)s2α2(x)s1 .

(2) There exist β1(x) ∈ AutAs1 [x]
(Ps1 [x]) and β2(x) ∈ AutAs2 [x]

(Ps2 [x])

with β1(0) = idPs1
and β2(0) = idPs2

, respectively, such that

σ(x) = β2(x)s1β1(x)s2 .

Moreover, if σ(x) ̸= σ(ax)2 for any non-zero element a ∈ A, then the
two decompositions are distinct.

Proof. Let σ(x) ∈ AutAs1s2 [x]
(Ps1s2 [x]) such that σ(0) = idPs1s2

.

Then since U(EndAs1s2 [x]
(Ps1s2 [x])) = AutAs1s2 [x]

(Ps1s2 [x]), we have

σ(x) ∈ (id+ xEndAs1s2 [x]
(Ps1s2 [x]))

∗.

Notice that

(id+ xEndAs1s2 [x]
(Ps1s2 [x]))

∗ = (id+ xEnd(As1 )s2 [x]
((Ps1)s2 [x])))

∗.

Then by the Quillen splitting lemma, there exists an integer k1 ≥ 0 such
that for any f1, f2 ∈ A with f1 − f2 ∈ Ask12 , we have f1/s

0
1, f2/s

0
1 ∈ As1

with f1/s
0
1 − f2/s

0
1 ∈ As1(s2/s

0
1)

k1 , so that there exists ψ1(x) ∈ (id +
xEndAs1 [x]

(Ps1 [x]))
∗ such that ψ1(x)s2/s01 = σ((f1/s

0
1)x)σ((f2/s

0
1)x)

−1.

For our simplicity, we write this equation by ψ1(x)s2 = σ(f1x)σ(f2x)
−1.

Since

(id+ xEndAs1s2 [x]
(Ps1s2 [x]))

∗ = (id+ xEnd(As2 )s1 [x]
((Ps2)s1 [x])))

∗,

it follows from the Quillen splitting lemma again that there exists an in-
teger k2 ≥ 0 such that for any g1, g2 ∈ A with g1−g2 ∈ Ask21 , there exists
ψ2(x) ∈ (id+xEndAs2 [x]

(Ps2 [x]))
∗ such that ψ2(x)s1 = σ(g1x)σ(g2x)

−1.

Now take k = max{k1, k2}. As1 + As2 = A, so Ask1 + Ask2 = A.
There exist λ, µ ∈ A such that λsk1 + µsk2 = 1.

(1) Consider the equation

σ(x) = (σ(x)σ(λsk1x)
−1)(σ(λsk1x)σ(0)

−1).

1− λsk1 = µsk2 ∈ Ask2 ⊆ Ask12 , so there exists

α1(x) ∈ (id+ xEndAs1 [x]
(Ps1 [x]))

∗

such that α1(x)s2 = σ(x)σ(λsk1x)
−1. λsk1 ∈ Ask1 ⊆ Ask21 , so there exists

α2(x) ∈ (id+ xEndAs2 [x]
(Ps2 [x]))

∗

such that α2(x)s1 = σ(λsk1x)σ(0)
−1. Hence σ(x) = α1(x)s2α2(x)s1 .
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(2) Consider the equation

σ(x) = (σ(λsk1x)σ(0)
−1)(σ(λsk1x)

−1σ(x)).

Let τ(x) = σ(x)−1. Then σ(λsk1x)
−1σ(x) = τ(λsk1x)τ(x)

−1. So,

σ(x) = (σ(λsk1x)σ(0)
−1)(τ(λsk1x)τ(x)

−1).

λsk1 − 1 = −µsk2 ∈ Ask2 ⊆ Ask12 , so there exists β1(x) ∈ (id+ xEndAs1 [x]

(Ps1 [x]))
∗ such that β1(x)s2 = τ(λsk1x)τ(x)

−1. Take β2(x) = α2(x) with
the notation as in (1). Then σ(x) = β2(x)s1β1(x)s2 .

Moreover, assume that the two decompositions are identical. Then

α1(x)s2 = β2(x)s1 and α2(x)s1 = β1(x)s2 .

So, by (1) and (2),

σ(x)σ(λsk1x)
−1 = α1(x)s2 = β2(x)s1 = σ(λsk1x)σ(0)

−1.

Since σ(0) = id, it follows that σ(x) = σ(λsk1x)
2.

Corollary 3.3. Let P be a projective A-module. Let s1, s2 ∈ A be
such that As1 +As2 = A. Then

(idPs1s2
+ xEndAs1s2 [x]

(Ps1s2 [x]))
∗

= (idPs1
+ xEndAs1 [x]

(Ps1 [x]))
∗
s2(idPs2

+ xEndAs2 [x]
(Ps2 [x]))

∗
s1

and

(idPs1s2
+ xEndAs1s2 [x]

(Ps1s2 [x]))
∗

= (idPs2
+ xEndAs2 [x]

(Ps2 [x]))
∗
s1(idPs1

+ xEndAs1 [x]
(Ps1 [x]))

∗
s2 .

Theorem 3.4. Let P be a projective A-module and let s1, s2 ∈ A
be such that As1 + As2 = A. Let σ(x) ∈ EndAs1s2 [x]

(Ps1s2 [x]). Then
the following statements are true:

(1) If σ(x) has a left inverse and σ(0) = idPs1s2
, then there exists

σ1(x) ∈ EndAs1 [x]
(Ps1 [x]) which has a right inverse and σ1(0) =

idPs1
and there exists σ2(x) ∈ EndAs2 [x]

(Ps2 [x]) which has a left

inverse and σ2(0) = idPs2
such that σ(x) = σ1(x)s2 σ2(x)s1 .

(2) If σ(x) has a right inverse and σ(0) = idPs1s2
, then there exists

σ1(x) ∈ EndAs1 [x]
(Ps1 [x]) which has a left inverse and σ1(0) =

idPs1
and there exists σ2(x) ∈ EndAs2 [x]

(Ps2 [x]) which has a right

inverse and σ2(0) = idPs2
such that σ(x) = σ2(x)s1 σ1(x)s2 .
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Proof. (1) Let τ(x) be a left inverse of σ(x). Consider the following
diagram:

Ps1 [x]

��

σ1(x)

%%KK
KKK

KKK
KK

Ps1 [x]

��

Ps2 [x]
// Ps1s2 [x] Ps1s2 [x]

σ1(x)s2

%%KK
KKK

KKK
KK

Ps2 [x]

σ2(x)

ddHHHHHHHHH
// Ps1s2 [x]

σ2(x)s1

eeKKKKKKKKKK
σ(x)

<−−−−−τ(x)−−−−−
// Ps1s2 [x]

Since σ(0) = idPs1s2
, it follows from [3, Lemma 4.3.5] that there exists

σ0(x) ∈ EndAs1s2 [x]
(Ps1s2 [x]) such that σ(x) = idPs1s2

+ xσ0(x). Since

τ(x)σ(x) = idPs1s2
, we have τ(0) = τ(0)idPs1s2

= τ(0)σ(0) = idPs1s2
.

So, there exists τ0(x) ∈ EndAs1s2 [x]
(Ps1s2 [x]) such that τ(x) = idPs1s2

+

xτ0(x). Hence

idPs1s2
= τ(x)σ(x)

= (idPs1s2
+ xτ0(x))(idPs1s2

+ xσ0(x))

= idPs1s2
+ x(τ0(x) + σ0(x)) + x2τ0(x)σ0(x)

From this equation we get{
τ0(x) + σ0(x) = 0,
τ0(x)σ0(x) = 0

There exists a positive integer k1 such that both λsk1σ0(x) and λs
k
1τ0(x)

are in EndAs2 [x]
(Ps2 [x]) for all λ ∈ A and for all k ≥ k1. There ex-

ists a positive integer k2 such that both µsk2σ0(x) and µsk2τ0(x) are
in EndAs1 [x]

(Ps1 [x]) for all µ ∈ A and for all k ≥ k2. Take m =

max{k1, k2}. Then Asm1 + Asm2 = A. There exist λ0, µ0 ∈ A such
that λ0s

m
1 − µ0s

m
2 = 1. Let

σ12(x) = idPs2
+ λ0s

m
1 xσ0(x) ∈ EndAs2 [x]

(Ps2 [x]),

σ21(x) = idPs1
+ µ0s

m
2 xσ0(x) ∈ EndAs1 [x]

(Ps1 [x]),

τ12(x) = idPs2
+ λ0s

m
1 xτ0(x) ∈ EndAs2 [x]

(Ps2 [x]),

τ21(x) = idPs1
+ µ0s

m
2 xτ0(x) ∈ EndAs1 [x]

(Ps1 [x]).
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Then

σ12(x)

s01
= idPs1s2

+
λ0s

m
1

s01
xσ0(x),

σ21(x)

s02
= idPs1s2

+
µ0s

m
2

s02
xσ0(x),

τ12(x)

s01
= idPs1s2

+
λ0s

m
1

s01
xτ0(x),

τ21(x)

s02
= idPs1s2

+
µ0s

m
2

s02
xτ0(x)

and these are all in EndAs1s2 [x]
(Ps1s2 [x]). Let’s write

σ12(x)s1 =
σ1(x)

s01
, σ21(x)s2 =

σ2(x)

s02
, τ12(x)s1 =

τ1(x)

s01
, τ21(x)s2 =

τ2(x)

s02
.

Then we have(
τ12(x)s1
τ21(x)s2

)(
σ12(x)s1 σ21(x)s2

)
=

(
idPs1s2

τ(x)
σ(x) idPs1s2

)
.

(Further τ(x) = idPs1s2
− xσ0(x) and σ(x) = idPs1s2

− xτ0(x).) Now if

we take σ1(x) = τ21(x) and σ2(x) = σ12(x), then we can get the result
(1).

(2) If we change the roles of σ(x) and τ(x) in the proof of (1), then
we can get(

σ12(x)s1
σ21(x)s2

)(
τ12(x)s1 τ21(x)s2

)
=

(
idPs1s2

σ(x)
τ(x) idPs1s2

)
.

If we take σ1(x) = τ21(x) and σ2(x) = σ12(x), then we can get the result
(2).

Finally, we prove that Theorem 3.4 is a generalization of Theorem
3.2. In fact, under the same assumption as in Theorem 3.4, let

σ(x) ∈ AutAs1s2 [x]
(Ps1s2 [x])

such that σ(0) = idPs1s2
. Then σ(x) has an inverse τ(x), so that

τ(x)σ(x) = idPs1s2
and σ(x)τ(x) = idPs1s2

. From these two equations,
we can get the last two equations, of the proof of Theorem 3.4, which
are in the matrix forms. Now, take σ1(x) = τ21(x) and σ2(x) = σ12(x).
Then it follows from the two matrices that σ1(x) has an inverse σ21(x)
and σ2(x) has an inverse τ12(x). So, σ1(x) ∈ AutAs1 [x]

(Ps1 [x]) and
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σ2(x) ∈ AutAs2 [x]
(Ps2 [x]) with σ1(0) = idPs1

and σ2(0) = idPs2
, re-

spectively, such that

σ(x) = σ1(x)s2σ2(x)s1 .

This shows that Theorem 3.4 (1) holds. The remainder of the proof is
similar.

Let’s summarize the results. Let s1, s2 ∈ A be such that As1 +
As2 = A and let P be a projective A-module. Then we used the
splitting lemma of Quillen to show that every element of (idPs1s2

+

xEndAs1s2 [x]
(Ps1s2 [x]))

∗ has two decompositions. And then we gener-
alized the result to Theorem 3.4. Consequently, we sharpened a local
version of the Quillen splitting lemma to generalize it.
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