DOI QR코드

DOI QR Code

Study of Size Optimization for Skirt Structure of Composite Pressure Vessel

복합재 압력용기의 스커트 치수 최적화 설계 연구

  • Received : 2012.06.26
  • Accepted : 2012.09.19
  • Published : 2013.01.01

Abstract

This study aims to find the optimal skirt dimensions for a composite pressure vessel with a separated dome part. The size optimization for the skirt structure of the composite pressure vessel was conducted using a sub-problem approximation method and batch processing codes programmed using ANSYS Parametric Design Language (APDL). The thickness and length of the skirt part were selected as design variables for the optimum analysis. The objective function and constraints were chosen as the weight and the displacement of the skirt part, respectively. The numerical results showed that the weight of the skirt of a composite pressure vessel with a separated dome part could be reduced by a maximum of 4.38% through size optimization analysis of the skirt structure.

본 연구의 목적은 최적화 해석 기법을 이용하여 복합재 압력용기의 스커트 치수를 도출하는 것이다. 복합재 압력용기 스커트 최적화 해석은 부분문제 근사법을 사용하였으며, APDL(ANSYS Parametric Design Language)을 이용하여 해석의 모든 과정을 일괄처리하였다. 설계변수로는 압력용기 스커트 부위의 두께와 길이를 선정하였으며, 내압에 의해 발생하는 변위와 무게를 각각 목적함수로 하여 최적화 해석을 통해 최적의 스커트 치수를 도출하였다. 그 결과 복합재 압력용기의 스커트 무게를 최대 4.38% 절감할 수 있었다.

Keywords

References

  1. Park, J. S., Kim, H. K., Kim, C. U., Hwang, T. K., Hong, C. S. and Kim, C. G., 2001, "Behavior Analysis and Strain Measurement of the Filament Wound Composite Tank Part I. Finite Element Analysis of the Filament Wound Tank," The Korean Society for Aeronautical & Space Sciences, Vol. 29, No. 7, pp. 49-55.
  2. Zickel, J., 1962, "Isotensoid Pressure Vessel," ARS Journal, Vol. 32, No. 6, pp. 950-951.
  3. Doh, Y. D. and Hong, C. S., 1995, "Progressive Failure Analysis for Filament Wound Pressure Vessel," Journal of Reinforced Plastics and Composites, Vol. 14, No. 12, pp. 1278-1306. https://doi.org/10.1177/073168449501401203
  4. Hartung, R. F., 1963, "Planar-wound Filamentary Pressure Vessels," AIAA Journal, Vol. 1, No. 12, pp. 2842-2844. https://doi.org/10.2514/3.2181
  5. Lee, Y. S., Cho, W. M., Lee, B. E. and Koo, S. H., 1993, "Nonlinear Stress Analysis of Pressure Vessel for Various Dome Shape and Thickness," Trans. Korean Soc. Mech. Eng. A, Vol. 17, No. 10, pp. 2634-2645.
  6. Choi, Y. G., Shin, K. B. and Kim, W. H., 2010, "A Study on Size Optimization of Rocket Motor Case using the Modified 2D Axisymmetric Finite Element Model," International Journal of Precision Engineering and Manufacturing, Vol. 11, No. 6, pp. 901-907. https://doi.org/10.1007/s12541-010-0109-x
  7. Hwang, T. K., Park, J. B., Kim, H. G., Doh, Y. D. and Moon, S. I., 2007, "Dome Shape Design and Performance Evaluation of Composite Pressure Vessel," Journal of Korean Society for Composite Materials, Vol. 20, No. 4, pp. 31-41.
  8. Liang, C. C., Chen, H. W. and Wang, C. H., 2002, "Optimum Design of Dome Contour for Filament Wound Composite Pressure Vessels based on a Shape Factor," Composite Structures, Vol. 58, No. 4, pp. 469-482. https://doi.org/10.1016/S0263-8223(02)00136-8
  9. Filament Wound Composite Pressure Vessels based on a Shape Factor," Composite Structures, Vol. 58, No. 4, pp. 469-482.
  10. Yurko, A. A. and Esslinger, J. R., 2005, "Affordable High Performance Composite Case Rocket Motor Manufacturing," 41st AIAA/ASME/ SAE/ASEE Joint Propulsion Conference.
  11. Mard, F., 1993, "Design, Manufacture and Test of the Composite Case for ERINT-1 Solid Rocket Motor," 29th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.
  12. Kim, C. U., Park, J. S., Hong, C. S. and Kim, C. G., 2000, "Analysis of Filament Wound Pressure Tank Considering Winding Angle Variation In Thickness Direction," Journal of Korean Society for Composite Materials, Vol. 13, No. 2, pp. 51-59.
  13. ANSYS Training Manual 12.0, 2009.

Cited by

  1. Numerical Evaluation of Backward Extrusion and Head Nosing for Producing a 6.75L Small Seamless AA6061 Liner vol.22, pp.4, 2013, https://doi.org/10.5228/KSTP.2013.22.4.204
  2. Predictions of the Cooling Performance on an Air-Cooled EV Battery System According to the Air Flow Passage Shape vol.40, pp.12, 2016, https://doi.org/10.3795/KSME-B.2016.40.12.801