
 298

I. INTRODUCTION

Nowadays, image matching is used for solving many

problems in the field of computer vision, such as object or

scene recognition, three-dimensional (3D) structure from

multiple images, stereo correspondence, and motion trac-

king. In recent years, an approach has been proposed to

generate a set of salient image features. This approach is

called the scale invariant feature transform (SIFT); it

transforms image data into scale-invariant coordinates with

respect to local features. SIFT is a complex algorithm, and

when used in multimedia applications, it is necessary to find

a scheme to implement the algorithm in real-time.

In the previous approaches, the SIFT algorithm was

implemented in both software and hardware. Due to the

complexity of the SIFT algorithm, the software imple-

mentation cannot be applied in real-time applications.

Therefore, recent research has mainly focused on the

implementation and acceleration of the SIFT algorithm in

hardware. Some approaches use the graphic processing unit

(GPU) for the SIFT algorithm implementation. Sinha et al.

[1] applied SIFT on a GPU; however, because of the

hardware and OpenGL limitations, some data transfers were

required between the GPU and the central processing unit

(CPU), resulting in an increase in the data transmission time.

As a result, their implementation can process a 640 × 480

video at the speed of 10 frames per second (FPS). Another

approach is the SIFT implementation on multi-core systems

proposed by Zhang et al. [2]. This approach takes advantage

of the computing power of multi-core processors like dual-

socket and quad-core systems. In their experiments, Zhang

et al. [2] observed that the processing speed achieves an

average of 45 FPS for a 640 × 480 video. However, more

fine-grain-level parallelization must be conducted to reduce

the load imbalance and achieve maximum performance with

this approach in future large-scale multi-core systems.

Received 16 September 2013, Revised 15 October 2013, Accepted 30 October 2013
*Corresponding Author Le Tran Su (E-mail: letransu@gmail.com, Tel: +82-52-259-2831)
School of Computer Engineering and Information Technology, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 680-749, Korea.

 http://dx.doi.org/10.6109/jicce.2013.11.4.298 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/li-censes/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

J. lnf. Commun. Converg. Eng. 11(4): 298-306, Dec. 2013 Regular paper

Novel Parallel Approach for SIFT Algorithm Implementation

Le Tran Su
*

 and Jong-Soo Lee, Member, KIICE

School of Computer Engineering and Information Technology, University of Ulsan, Ulsan 680-749, Korea

Abstract

The scale invariant feature transform (SIFT) is an effective algorithm used in object recognition, panorama stitching, and

image matching. However, due to its complexity, real-time processing is difficult to achieve with current software approaches.

The increasing availability of parallel computers makes parallelizing these tasks an attractive approach. This paper proposes a

novel parallel approach for SIFT algorithm implementation using a block filtering technique in a Gaussian convolution

process on the SIMD Pixel Processor. This implementation fully exposes the available parallelism of the SIFT algorithm

process and exploits the processing and input/output capabilities of the processor, which results in a system that can perform

real-time image and video compression. We apply this implementation to images and measure the effectiveness of such an

approach. Experimental simulation results indicate that the proposed method is capable of real-time applications, and the

result of our parallel approach is outstanding in terms of the processing performance.

Index Terms: Data parallel architecture, Parallel processing, SIFT, SIMD

Open Access

Novel Parallel Approach for SIFT Algorithm Implementation

http://jicce.org 299

The single instruction multiple data (SIMD) pixel pro-

cessor array, which has not previously been proposed for

SIFT algorithm implementation purposes, is used in our

implementation to address the major draw-backs of previous

research. To adapt the SIFT algorithm implementation to the

data parallel architecture, we propose a parallelization SIFT

algorithm approach called the P-SIFT algorithm. In the

P-SIFT implementation, block filtering [3] is used for

calculating the Gaussian filter to improve the performance.

The SIMD pixel processor can exploit the benefits of

integrating optoelectronic devices into a high-performance

digital processing system and fully exposes the available

parallelism calculation of the P-SIFT algorithm. We have

evaluated the impact of our parallel approach based on the

processing performance. In the experiment detail section,

we report that the processing speed is 326 FPS in the case of

a 640 × 480 video. Compared with the existing hardware-

based SIFT implementations [1, 2, 4], our approach

achieves a speed that is around 7 to 30 times faster. Further,

because of the fine-grain characteristic of the SIMD pixel

processor, we show that the load imbalance of our imple-

mentation is reduced.

The rest of this paper is organized as follows: In Section

II, we briefly describe the related research. In Section III, a

novel P-SIFT that uses block filtering is proposed. Section

IV discusses the SIMD pixel processor system and the low-

memory SIMD architecture. Section V describes in detail

how the proposed algorithm has been adapted to fully

exploit the unique capability of the SIMD processor system.

Strong proposals for the performance of the system and the

experimental results are presented in Section VI. Section

VII concludes this paper with a presentation of the sim-

ulation results.

II. RELATED WORK

SIFT is perhaps the most popular invariant local feature

detector at present and has been applied successfully on

many occasions, such as object recognition, image match

and registration, structure from motion and 3D recon-

struction, visual simultaneous localization and mapping and

image panorama.

Nevertheless, the complexity of the SIFT algorithm

results in a very high time consumption. Because of the high

popularity of SIFT, it is no surprise that several variants and

extensions of SIFT have been proposed. For example, Ke

and Sukthankar [5] proposed the PCA-SIFT that applies

principal component analysis (PCA) to the normalized

gradient patch. The Gradient location and orientation his-

togram (GLOH) [6] changes the SIFT’s location grid and

uses PCA to reduce the size of SIFT. The primary focus of

these extensions is to gain improved performance.

An approach called Harris-SIFT [7] removes many

indistinctive candidates before generating descriptors, thus

saving excessive computations. Harris-SIFT reduces both

the feature number and the database size, or in other words,

cuts down the feature matching time. However, as provided,

the results of the Harris-SIFT method are not sufficiently

fast to be implemented in real time.

In the fast approximated SIFT, Grabner et al. [8] proposed

a modified SIFT method for recognition purposes. The

authors sped up the SIFT computation by using approxi-

mations (mainly employing integral images) in both the

difference of Gaussian (DoG) detector and the SIFT des-

criptors. Their method can reduce the SIFT computation

time by a factor of eight as compared to the binaries SIFT

proposed by Lowe [9]. However, the loss in matching

performance is a major drawback of this approach.

In the above approaches, the authors attempted to improve

the performance of the SIFT algorithm by the modification

of SIFT. However, for real-time implementation purposes,

some hardware-based approaches have been proposed in

recent years. Sinha et al. [1] presented GPU-SIFT, a GPU-

based implementation for the SIFT feature extraction algo-

rithm. The GPU-SIFT has been implemented using the

OpenGL graphics library and the Cg shading language and

tested on modern graphics hardware platforms. Their imple-

mentation can process a 640 × 480 video at 10 FPS. The

weakness of this approach can be attributed to the hardware

and OpenGL limitations. Some data transfers are required

between the GPU and the CPU and thus take time for data

transition. Another approach that also used a GPU was

developed by Heymann et al. [4]. In this research, the

authors showed how a feature extraction algorithm can be

adapted to make use of modern graphics hardware. Their

experiment used NVIDIA Quadro FX 3400 GPU with 256-

MB video RAM. As a result, the SIFT algorithm can be

applied to image sequences with 640 × 480 pixels at 20 FPS.

Further, recently, with the development of embedded

technology, a new implementation of SIFT on a multi-core

processor has been proposed by Zhang et al. [2]. In their

approach, the SIFT algorithm is implemented on multi-core

processors like dual socket and quad-core systems. The

obtained result is an average of 45 FPS for a 640 × 480

video.

III. P-SIFT ALGORITHM USING BLOCK

FILTERING

The SIFT algorithm [10] combines a scale invariant

region detector and a descriptor based on the gradient

distribution in the detected regions. The descriptor is

presented by a 3D histogram of gradient locations and

orientations. These descriptors (local features) are very dis-

J. lnf. Commun. Converg. Eng. 11(4): 298-306, Dec. 2013

http://dx.doi.org/10.6109/jicce.2013.11.4.298 300

tinctive and invariant for image scaling or rotation. The

flowchart of the SIFT algorithm is shown in Fig. 1. In this

flowchart, there are four major steps [9]: DoG space

building, keypoint detection and localization, orientation

assignment, and the keypoint descriptor. DoG space buil-

ding: scale-space extrema detection stage of the filtering

attempts to equate different viewpoints that are the pro-

jections of a specific 3D object point. They are then

examined in further detail. The identification of candidate

locations can be efficiently achieved using the continuous

“scale space” function, which is based on the Gaussian

function. The scale space is defined by the following

function:

 	�	��, �,�� = 		��,�,�� ∗
��, ��. (1)

SIFT is one such technique that locates the scale-space

extrema from the Gaussian image differences D(x, y, σ)

given by

 ���, �,�� = ���,�, ���− ���, �,��. (2)

In Eqs. (1) and (2), * denotes the convolution operator,

G(x, y, σ) represents a variable-scale Gaussian kernel, I(x, y)

refers to the input image, and k is used for increasing or

decreasing the scale.

The construction of the DoG space is illustrated in Fig. 2.

The initial image is repeatedly convolved with Gaussians

to generate the set of scale-space images. The adjacent

Gaussian images are subtracted to produce the DoG images

as shown on the right of the figure.

Fig. 1. The scale invariant feature transform (SIFT) algorithm flow-chart.
DoG: difference of Gaussian.

The Gaussian image is down-sampled by a factor of 2

after each octave, and the process repeated. The convolved

images are grouped by octave, and the number of DoG per

octave is fixed. Keypoint detection and localization: To

detect the local maxima or minima of D(x, y, σ), each

point is compared with its 8 neighbors on the same scale,

and its 9 neighbors on the vertical and horizontal scales. If

this value is larger than all 26 neighbors, it is the maximum;

if less, it is the minimum.

The keypoint localization stage attempts to eliminate

these points from the list of keypoints that have low contrast

(and are therefore sensitive to noise) or have poorly loca-

lized edges. This is achieved by calculating the Laplacian

value for each keypoint found in the previous stage. The

location of the extrema, z, can be expressed as follows:

 � =

��
�
�
��

���

��

��
. (3)

If the function value at z is below a threshold value, then

this point is discarded. This removes the extrema that have a

low contrast.

Edge extrema that have large principle curvatures but

small curvatures in the perpendicular direction are elimi-

nated. Using the 2 × 2 Hessian matrix H computed at the

location and scale of the keypoint, we can compute principle

curvatures that are proportional to the eigenvalue of H.

 = ���� ���

��� ���

�. (4)

The elimination criteria can be constructed as follows:

��(�)�

���(�)
<

(���)�

�
, (5)

Fig. 2. Difference of Gaussian space construction.

Scale

(first

octave)

Scale

(next

octave)

Build DoG

space

Novel Parallel Approach for SIFT Algorithm Implementation

http://jicce.org 301

where r = α/β, and α denotes the eigenvalue with a relatively

large magnitude and β represents the eigenvalue with a

smaller magnitude.

If this inequality is true, the keypoint is rejected.

The orientation assignment stage in Fig. 1 aims to assign

a consistent orientation to the keypoints based on the local

image properties. The keypoint descriptor is represented

relative to this orientation because it is invariant to the

rotational movements of the keypoints. The approach

taken to find an orientation uses the keypoint scale to

select the Gaussian smoothed image L. The gradient

magnitude m(x, y) and the orientation θ(x, y) can be com-

puted as follows:

���, ��
= �(��� + 1, �� − ��� − 1,��)� + (���, � + 1� − ���,� − 1�)�,

 (6)

���, �� = ��	��
���,���	����,���	
�����,�	������,�	

�. (7)

Then, we form an orientation histogram from the gradient

orientations of the sample points, and locate the highest

peak in the histogram. We use this peak and any other local

peak within 80% of the height of this peak to create a

keypoint with the orientation θ(x,y). Some points will be

assigned multiple orientations. Then, we fit a parabola to the

three histogram values closest to each peak to interpolate the

peak’s position.

The local gradient data, used above, are also used for

creating keypoint descriptors. The gradient information is

rotated to line up with the orientation of the keypoint and

then weighted by a Gaussian kernel with a variance of the

keypoint scale multiplied by 1.5. These data are then used

for creating a set of histograms over a window centered on

the keypoint.

Keypoint descriptors typically use a set of 16 histograms,

which are aligned in a 4 × 4 grid, each with 8 orientation

bins, one for each of the main compass directions and one

for each of the mid-points of these directions. These result

in a feature vector containing 128 elements.

Table 1. The distribution of computation time (measured in seconds) for
each stage in the SIFT algorithm

Image

(pixel)

SIFT stage

Build

DoG

Detect

keypoint

Assign

orientation

Extract

keypoint

800 × 600 2.023 0.237 1.105 1.107

640 × 480 1.884 0.194 0.928 0.839

256 × 256 0.361 0.032 0.211 0.206

128 × 128 0.199 0.012 0.142 0.105

SIFT: scale invariant feature transform, DoG: difference of Gaussian.

These resulting vectors are known as SIFT keys and are

used in the nearest-neighbors approach to identify possible

objects in an image. Collections of keys that agree on a

possible model are identified. When three or more keys

agree on the model parameters, the model is evident in the

image.

We processed images using the C++ code developed by

Lowe [9] and then measured the performance. The obtained

results (Table 1) show that most of the calculations are

implemented in the first stage: DoG space building. In this

step, many calculations are repeatedly processed. Based on

this characteristic, we propose a parallel approach for the

SIFT algorithm called P-SIFT. The proposed algorithm can

take advantage of parallelism. The P-SIFT will be described

in detail in subsection III-B. In subsection III-A, we present

a new method to calculate the Gaussian filter called block

filtering.

A. Block Filtering Technique

In the SIFT algorithm, the Gaussian filter is used many

times during the SIFT feature determination. For calculation

time reduction purposes, we propose a new method to

implement the Gaussian convolution. In the proposed

method, we use a 4 × 4 block to implement the Gaussian

filter.

For example, we divide the image into sub-blocks. The

size of these blocks is 4 × 4 pixels. Then, we apply a half

kernel to the block; in this case, it is an array with four

elements. In Fig. 3, we explain the “half kernel” definition.

Because of the symmetric characteristic of the Gaussian

kernel, we divide the Gaussian kernel into four “half

kernels.”

Fig. 4 demonstrates how these blocks are applied to the

image. After loading each 4 × 4 block of the input image.

These “half kernels” are applied in four directions (left,

right, top, and bottom) to the 4 × 4 block.

Fig. 3. An illustration of the half kernel. The Gaussian kernel on the left
side is divided into four “half kernels”, which are shown on the right side.

J. lnf. Commun. Converg. Eng. 11(4): 298-306, Dec. 2013

http://dx.doi.org/10.6109/jicce.2013.11.4.298 302

Fig. 4. 4 × 4 block filtering.

The proposed Gaussian filter implementation using the

block filtering technique includes the following four steps:

1. Load 4 × 4 pixels of image.

2. Load kernel values.

3. Compute convolution (left, right, top, and bottom).

Left, Right: reverse multiplication

Top: Matrix transpose

Bottom: Matrix transpose and then reverse multiplication

4. By repeating all image data, we will obtain the output

image.

Our previous research [10] indicated that by using the

block filtering for a Gaussian filter, we can reduce the

calculation time by half.

B. P-SIFT Algorithm

As evident from the flowchart of the original SIFT

algorithm (Fig. 5), each keypoint will be assigned an

orientation and generate a descriptor just after detecting the

keypoints for one scale. In this case, if we only detect a few

keypoints in the later iterations of the octaves and the scales,

there may be very few keypoints for the next computational

step. This implies that the load imbalance will occur in the

“Assign Orientation” and “Extract Descriptor” steps for

each keypoint.

Moreover, the number of keypoints detected from each

scale is decreased gradually when the image is down-

sampled. Because of this, load balance can be a serious

issue in the later stages.

Further, the original SIFT algorithm is implemented in

a straightforward manner. In this case, the speed of SIFT

is quite poor. In the straight implementation, SIFT feature

detection is repeated for each image in the scale space.

Therefore, we have to repeat the same operation many times.

To take advantage of the parallelization characteristic, we

propose a parallel approach to implement the SIFT algo-

rithm.

Fig. 5. Flowchart of the parallelization scale invariant feature transform
(P-SIFT).

In our approach, we propose a parallel SIFT algorithm (P-

SIFT) to adapt to the SIMD processor architecture. The

flowchart of P-SIFT is illustrated in Fig. 5. The first step is

to resize the input image into many images in the scale

space. In our implementation, the number of images in the

scale space is changed from 2 to 4. Then, we consider all

images in the scale space and apply the SIFT feature dete-

ction process simultaneously.

IV. SIMD PROCESSOR ARRAY

ARCHITECTURE

The SIMD pixel processor system [11] exploits the

benefits of integrating optoelectronic devices into a high-

performance digital processing system. In this system, an

array of thin-film detectors is integrated on top of and

electrically interfaced with digital SIMD processing

elements. The general architecture of a SIMD system is

depicted in Fig. 6. The program is stored in the array control

unit, and each instruction is broadcast to every node of the

system in a lockstep fashion (i.e., via a single instruction

stream). Each node, in turn, executes the received instruc-

tions on its local data (multiple data stream), while exchang-

ing data with other nodes through the interconnection

network.

Build DoG space

Novel Parallel Approach for SIFT Algorithm Implementation

http://jicce.org 303

 Neighboring PEs

Comm. Unit

Register File

16 by 32 bit

2 read, 1 write

CFA

S&H

and

ADC

SP.Registers&I/O

Arithmetic,

Logical, and Shift

Unit

MACC

MMX

Local memory

Sleep

Decoder

Single Processing Element

Fig. 6. Organization of single instruction multiple data (SIMD) parallel
architecture. ACU: array control unit.

Fig. 7. A block diagram of an single instruction multiple data (SIMD) pro-
cessor array.

Each SIMD processor node is interconnected to its four

neighbors through a mesh network closed as a torus. Thus,

the opposite rows (or columns) of the mesh are connected

to each other, enabling more powerful communication

schemes than those available with a standard North-East-

West-South (NEWS) network. The microarchitecture of an

SIMD processing element (PE) is shown in Fig. 7, along

with the interconnection network. The 16-bit data path

includes an adder-subtractor, barrel shifter, and multiply-

accumulator unit. Each PE also includes 64 words of local

memory.

Further, each SIMD processor node interfaces with a

small array of thin film detectors, which is a subset of the

focal plane array. The instruction set architecture allows a

single node to address up to 16 × 16 arrays of detectors.

Each processor incorporates eight-bit sigma-delta analog to

digital converters to convert light intensities, incident on

the detectors, into digital values. The SAMPLE instruction

simultaneously samples all detectors values and makes them

available for further processing. The SIMD execution model

allows the entire image projected on many nodes to be

sampled in a single cycle.

This monolithic integration is the key feature of the

SIMD pixel processor system, providing extremely compact,

high-frame-rate focal plane processing.

V. SIMD PROCESSOR ARRAY

ARCHITECTURE

To execute the P-SIFT algorithm, we consider all pixels

of the images. By using the specified SIMD array, we

distribute all pixels into all PEs in which every PE owns 16

pixels. Assume n is the total number of pixels. As a result,

the number of PEs involved in the computation is n/16. By

dividing the pixels among n/16 processors, every PE carries

out the computation only on the local memory containing

the 16 owned pixels along with their membership values as

well as center values. Then, the P-SIFT algorithm is

implemented on n/16 processors in which some new equa-

tions are required for every PE. This enhances the per-

formance of the P-SIFT algorithm implementation.

Fig. 8 shows how the P-SIFT algorithm is implemented

on the SIMD parallel architecture. We divided the algorithm

into the following six steps:

1. Detect the input image: Distribute the pixels to all

processors.

2. Resize image: Resize the input image to images in the

scale space. Each pixel of the images in the scale

space is also distributed to the processors.

3. Construct DoG space: Compute the Gaussian con-

volution, and construct the DoG space as described in

Section III. Each pixel of the images in the DoG space

is stored in the processors.

Fig. 8. Distribution of image data points to each PE node (N) in which
PEs hold 4 × 4 pixels and all PEs work in parallel with a torus

interconnection network. PE: processing element, SIFT: scale invariant
feature transform, DoG: difference of Gaussian.

P0

MEM 0

P1

MEM 1

Pn

MEM n

P0

MEM 0

P1

MEM 1

Pn

MEM n

ACU

INTERCONNECTION NETWORK

INSTRUCTION STREAM

Build DoG

space

J. lnf. Commun. Converg. Eng. 11(4): 298-306, Dec. 2013

http://dx.doi.org/10.6109/jicce.2013.11.4.298 304

4. Detect the keypoints from the images in the DoG space.

5. For each keypoint, we assign the orientation accor-

ding to Eqs. (6) and (7).

Finally, we define the descriptor of a keypoint. Each

keypoint descriptor is represented by a vector with 128

elements.

VI. PERFORMANCE EVALUATION

To evaluate the performance of the proposed algorithm,

we use a cycle-accurate SIMD simulator. We developed the

P-SIFT algorithm in the respective assembly languages for

the SIMD processor array. In this study, the image size of

256 × 256 pixels is used. For a fixed 256 × 256 pixel system,

because each PE contains 4 × 4 pixels, 4,096 PEs are used.

We summarize the parameters of the system configuration in

Table 2.

Table 2. System parameters

Parameter Value

Number of PEs 4,096

Pixels/PE 16

Memory/PE (word) 256 (32-bit word)

VLSI technology (nm) 100

Clock frequency (MHz) 150

Interconnection network Torus

intALU/intMLU/Barrel

Shifter/intMACC/Comm
1/1/1/1/1

PE: processing element, VLSI: very large scale integration ALU:

arithmetic logic unit, MLU: memory logic unit, MACC: multiply-

accumulator, Comm: communication.

 (a) (b) (c)

Fig. 9. Features detected by scale invariant feature transform algorithm
with a changing number of scales. (a) 2 octaves, (b) 3 octaves, and (c) 4
octaves.

Fig. 10. Test images.

The metrics of execution time and sustained throughput

of each case form the basis of the study comparison, defined

in (8) and (9):

Execution time

 		����� � �

��
 . (8)

Sustained throughput

 �� � �����.
.���

�����
�
�	

���

�, (9)

where C denotes the cycle count, fk represents the clock

frequency, Oexec refers to the number of executed operations,

U denotes the system utilization, and NPE represents the

number of processing elements.

Fig. 9 shows the detected SIFT features in the case of a

Lena image. As the number of scales increases, the detected

SIFT features become more precise.

In this experiment, we use three different images (1, 2,

and 3) as presented in Fig. 10. The number of octaves is also

changed to 2, 3, and 4 in order to evaluate the complexity of

the SIFT algorithm.

Table 3 summarizes the execution parameters for each

image in the 4,096-PE system. Scalar instructions control

the processor array. Vector instructions, performed on the

processor array, execute the algorithm in parallel. System

Utilization is calculated as the average number of active

processing elements. The algorithm operates with a System

Utilization of 54% on average, resulting in a high sustained

throughput. Overall, our parallel implementation supports

sufficient real-time performance (1.03 ms) and provides

efficient processing for the SIFT algorithm.

Fig. 11. Performance comparison between our proposed implementation
and the other implementations. FPS: frames per second, GPU: graphic
processing unit, SIFT: scale invariant feature transform, SIMD: single
instruction multiple data.

Novel Parallel Approach for SIFT Algorithm Implementation

http://jicce.org 305

Table 4 shows the distribution of vector instructions for

the parallel algorithm. Each bar divides the instructions into

the arithmetic logic unit (ALU), memory (MEM), comm-

unication (COMM), PE activity control unit (MASK), and

image loading (PIXEL). The ALU and MEM instructions

are computation cycles, while the COMM and MASK

instructions are necessary for data distribution and synchro-

nization of the SIMD processor array. The results indicate

that the proposed algorithm is dominated by ALU, MEM,

and MASK operations.

In comparison with previous approaches, we imple-

mented the experiment for a 640 × 480 pixel image. The

number of octaves is 4. The calculated execution time after

the implementation is 3.07 ms. Therefore, our proposed

implementation can process a sequence of 640 × 480 images

at 1000/3.07 ≈ 326 (FPS). Fig. 11 shows the comparison

between our parallel implementation with the GPU-SIFT,

optimization GPU, and the SIFT implementation based on a

multi-core processor. The results indicate that our proposed

method can reduce the calculation time by around 32 times

as compared to the GPU-SIFT method, 16 times as

compared to the optimization GPU method and 7 times as

compared to the multi-core-based implementation. These

results demonstrate that the proposed parallel approach

supports fast processing and provides reliable and efficient

processing for SIFT implementation.

VII. CONCLUSION

Recent advances in a wide range of applications of the

SIFT algorithm in the field of computer vision require an

increase in computational throughput and efficiency. These

increased demands have become an important challenge in

implementing the SIFT algorithm in real-time applications.

In this paper, a parallel implementation of the P-SIFT

algorithm using block filtering based on a SIMD pixel

processor was presented. By using the SIMD pixel pro-

cessor system, we fully exploited the available parallelism

of the P-SIFT algorithm, primarily in the DoG space

construction step. The obtained average processing speed

was 326 FPS for images with 640 × 480 pixels. In comp-

arison with the previous implementation [8, 11], the

proposed method was 30 times faster than the GPU and 7

times faster than the multicore implementation. In this

research, we simulated the SIFT algorithm in the SIMD

pixel processor. From the obtained performance result, we

concluded that an actual implementation on hardware

promises a good solution to implement the SIFT algorithm

in real-time applications. The monolithic design and SIMD

operation node allowed the FPS rate to be sustained at

variable image sizes. The bandwidth bottleneck between

the detector array and parallel processors did not exist

even when the image size was increased. The experiment

Table 3. Algorithm performance on a 4,096-PE system running at 150 MHz

Image
Vector

Instruction

Scalar

Instruction

System

Utilization (%)

Total number of

cycles

Texec

(ms)

Sustained

Throughput (Gops/s)

Image 1 Octave = 2 61,163 18,798 52.3 79,916 0.53 247

Octave = 3 89,239 28,196 54.6 117,435 0.78 255

Octave = 4 115,503 37,593 55.2 153,096 1.02 256

Image 2 Octave = 2 67,589 18,804 52.8 86,393 0.58 252

Octave = 3 90,473 28,538 54.9 119,011 0.79 257

Octave = 4 116,169 37,725 55.9 153,894 1.03 258

Image 3 Octave = 2 67,993 18,867 52.8 86,860 0.58 253

Octave = 3 90,081 28,914 55.1 119,715 0.80 254

Octave = 4 116,437 37,885 56.3 154,322 1.03 261

Table 4. The distribution (measured in %) of vector instructions for the algorithm

Image
Instruction distribution

ALU MEM COMM MASK PIXEL

Image 1 Octave = 2 52.794 22.137 7.220 17.749 0.098

Octave = 3 55.291 18.936 7.442 18.247 0.099

Octave = 4 55.912 17.539 7.646 18.797 0.103

Image 2 Octave = 2 57.185 20.130 6.533 16.061 0.088

Octave = 3 55.670 18.899 7.321 17.009 0.098

Octave = 4 56.165 17.439 7.602 18.690 0.102

Image 3 Octave = 2 57.439 20.010 6.494 15.966 0.088

Octave = 3 55.830 18.831 7.295 17.944 0.098

Octave = 4 56.266 17.399 7.585 18.646 0.102

ALU: arithmetic logic unit, MEM: memory, COMM: communication, MASK: processing element activity control unit, PIXEL: image loading.

J. lnf. Commun. Converg. Eng. 11(4): 298-306, Dec. 2013

http://dx.doi.org/10.6109/jicce.2013.11.4.298 306

results also indicated that the proposed parallel approach

provided a high-throughput, low-memory implementation

and reduced the load imbalance.

REFERENCES

[1] S. N. Sinha, J. M. Frahm, M. Pollefeys, and Y. Genc, “Feature

tracking and matching in video using programmable graphics

hardware,” Machine Vision and Applications, vol. 22, no. 1, pp.

207-217, 2011.

[2] Q. Zhang, Y. Chen, Y. Zhang, and Y. Xu, “SIFT implementation

and optimization for multi-core systems,” in Proceedings of the

IEEE International Symposium on Parallel and Distributed

Processing, Miami: FL, 2008.

[3] L. T. Su, P. J. Ghang, and J. S. Lee, “Integer Gaussian convolution

with cache memory for real-time processing of the Scale Invariant

Feature Transform algorithm,” in Proceedings of the International

Forum on Strategic Technology, Ulaanbaatar, Mongolia, pp. 298-

301, 2007.

[4] S. Heymann, K. Muller, A. Smolic, B. Frohlich, and T. Wiegand,

“SIFT implementation and optimization for general-purpose GPU,”

in Proceedings of the 15th International Conference in Central

Europe on Computer Graphics, Visualization and Computer Vision,

Plzen-Bory, Czech Republic, 2007.

[5] Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive repre-

sentation for local image descriptors,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition, Washington: DC, pp. 506-513, 2004.

[6] K. Mikolajczyk and C. Schmid, “A performance evaluation of

local descriptors,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 27, no. 10, pp. 1615-1630, 2005.

[7] P. Azad, T. Asfour, and R. Dillmann, “Combining Harris interest

points and the SIFT descriptor for fast scale-invariant object

recognition,” in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, St. Louis: MO, pp.

4275-4280, 2009.

[8] M. Grabner, H. Grabner, and H. Bischof, “Fast approximated

SIFT,” in Proceedings of the 7th Asian Conference on Computer

Vision, Hyderabad, India, pp. 918-927, 2006.

[9] D. G. Lowe, “Object recognition from local scale-invariant

features,” in Proceedings of the International Conference on

Computer Vision, Kerkyra, Greece, p. 1150, 1999.

[10] D. G. Lowe, “Distinctive image features from scale-invariant

keypoints,” International Journal of Computer Vision, vol. 60, no.

2, pp. 91-110, 2004.

[11] A. Gentile, H. Cat, F. Kossentini, F. Sorbello, and D. S. Wills,

“Real-time vector quantization-based image compression on the

SIMPil low memory SIMD architecture,” in Proceedings of the

IEEE International Conference on Performance, Computing and

Communications, Tempe: AZ, pp. 10-16, 1997.

received his bachelor’s degree in information systems and communication in 2005 from Hanoi University of
Technology, Vietnam. In 2009, he received his master’s degree from University of Ulsan, Korea. He is
currently working as a Ph.D. candidate in the Multimedia Applications Laboratory at the University of Ulsan
in Korea. His research interests include image processing, parallel computing, and speech recognition.

received his bachelor’s degree in electrical engineering in 1973 from Seoul National University and his
M.Eng. in 1981. In 1985, he was awarded his Ph.D. from Virginia Polytechnic Institute and State University
in the US. He is currently working in the area of multimedia applications at the University of Ulsan in Korea.
His research interests include the development of personal English cultural experience programs using
multimedia applications and usability interface techniques to facilitate the acquisition of English language
skills by Koreans. He is also working on multimedia-based online TOEIC and brain-gymnastics training.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 450
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 450
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1800
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /KOR <FEFF005BAE30C900003A00200027002D0020CD9CB825C6A900200028C555CD950058002C0020C5ECBC31004F00290027005D0020005BAE30C900003A00200027002D0020CD9CB825C6A900200028C555CD95004F002C0020C5ECBC31005800290027005D0020005BAE30C900003A00200027002D0020CD9CB825C6A900200028C555CD95004F002C0020C5ECBC31004F00290027005D0020005BAE30C900003A00200027CD9CD3100020D488C9C80027005D0020C7740020C124C815C7440020C0ACC6A9D558C5EC0020ACE0D488C9C80020C2DCD5D80020C778C1C4C5D00020AC00C7A50020C801D569D55C002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D569B2C8B2E4002E0020C774B807AC8C0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200035002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

