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I. INTRODUCTION 

 

Nowadays, image matching is used for solving many 

problems in the field of computer vision, such as object or 

scene recognition, three-dimensional (3D) structure from 

multiple images, stereo correspondence, and motion trac-

king. In recent years, an approach has been proposed to 

generate a set of salient image features. This approach is 

called the scale invariant feature transform (SIFT); it 

transforms image data into scale-invariant coordinates with 

respect to local features. SIFT is a complex algorithm, and 

when used in multimedia applications, it is necessary to find 

a scheme to implement the algorithm in real-time. 

In the previous approaches, the SIFT algorithm was 

implemented in both software and hardware. Due to the 

complexity of the SIFT algorithm, the software imple-

mentation cannot be applied in real-time applications. 

Therefore, recent research has mainly focused on the 

implementation and acceleration of the SIFT algorithm in 

hardware. Some approaches use the graphic processing unit 

(GPU) for the SIFT algorithm implementation. Sinha et al. 

[1] applied SIFT on a GPU; however, because of the 

hardware and OpenGL limitations, some data transfers were 

required between the GPU and the central processing unit 

(CPU), resulting in an increase in the data transmission time. 

As a result, their implementation can process a 640 × 480 

video at the speed of 10 frames per second (FPS). Another 

approach is the SIFT implementation on multi-core systems 

proposed by Zhang et al. [2]. This approach takes advantage 

of the computing power of multi-core processors like dual-

socket and quad-core systems. In their experiments, Zhang 

et al. [2] observed that the processing speed achieves an 

average of 45 FPS for a 640 × 480 video. However, more 

fine-grain-level parallelization must be conducted to reduce 

the load imbalance and achieve maximum performance with 

this approach in future large-scale multi-core systems. 
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Abstract 

The scale invariant feature transform (SIFT) is an effective algorithm used in object recognition, panorama stitching, and 

image matching. However, due to its complexity, real-time processing is difficult to achieve with current software approaches. 

The increasing availability of parallel computers makes parallelizing these tasks an attractive approach. This paper proposes a 

novel parallel approach for SIFT algorithm implementation using a block filtering technique in a Gaussian convolution 

process on the SIMD Pixel Processor. This implementation fully exposes the available parallelism of the SIFT algorithm 

process and exploits the processing and input/output capabilities of the processor, which results in a system that can perform 

real-time image and video compression. We apply this implementation to images and measure the effectiveness of such an 

approach. Experimental simulation results indicate that the proposed method is capable of real-time applications, and the 

result of our parallel approach is outstanding in terms of the processing performance. 
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The single instruction multiple data (SIMD) pixel pro-

cessor array, which has not previously been proposed for 

SIFT algorithm implementation purposes, is used in our 

implementation to address the major draw-backs of previous 

research. To adapt the SIFT algorithm implementation to the 

data parallel architecture, we propose a parallelization SIFT 

algorithm approach called the P-SIFT algorithm. In the 

P-SIFT implementation, block filtering [3] is used for 

calculating the Gaussian filter to improve the performance. 

The SIMD pixel processor can exploit the benefits of 

integrating optoelectronic devices into a high-performance 

digital processing system and fully exposes the available 

parallelism calculation of the P-SIFT algorithm. We have 

evaluated the impact of our parallel approach based on the 

processing performance. In the experiment detail section, 

we report that the processing speed is 326 FPS in the case of 

a 640 × 480 video. Compared with the existing hardware-

based SIFT implementations [1, 2, 4], our approach 

achieves a speed that is around 7 to 30 times faster. Further, 

because of the fine-grain characteristic of the SIMD pixel 

processor, we show that the load imbalance of our imple-

mentation is reduced.  

The rest of this paper is organized as follows: In Section 

II, we briefly describe the related research. In Section III, a 

novel P-SIFT that uses block filtering is proposed. Section 

IV discusses the SIMD pixel processor system and the low-

memory SIMD architecture. Section V describes in detail 

how the proposed algorithm has been adapted to fully 

exploit the unique capability of the SIMD processor system. 

Strong proposals for the performance of the system and the 

experimental results are presented in Section VI. Section 

VII concludes this paper with a presentation of the sim-

ulation results. 

 

 

II. RELATED WORK 

 

SIFT is perhaps the most popular invariant local feature 

detector at present and has been applied successfully on 

many occasions, such as object recognition, image match 

and registration, structure from motion and 3D recon-

struction, visual simultaneous localization and mapping and 

image panorama.  

Nevertheless, the complexity of the SIFT algorithm 

results in a very high time consumption. Because of the high 

popularity of SIFT, it is no surprise that several variants and 

extensions of SIFT have been proposed. For example, Ke 

and Sukthankar [5] proposed the PCA-SIFT that applies 

principal component analysis (PCA) to the normalized 

gradient patch. The Gradient location and orientation his-

togram (GLOH) [6] changes the SIFT’s location grid and 

uses PCA to reduce the size of SIFT. The primary focus of 

these extensions is to gain improved performance. 

An approach called Harris-SIFT [7] removes many 

indistinctive candidates before generating descriptors, thus 

saving excessive computations. Harris-SIFT reduces both 

the feature number and the database size, or in other words, 

cuts down the feature matching time. However, as provided, 

the results of the Harris-SIFT method are not sufficiently 

fast to be implemented in real time. 

In the fast approximated SIFT, Grabner et al. [8] proposed 

a modified SIFT method for recognition purposes. The 

authors sped up the SIFT computation by using approxi-

mations (mainly employing integral images) in both the 

difference of Gaussian (DoG) detector and the SIFT des-

criptors. Their method can reduce the SIFT computation 

time by a factor of eight as compared to the binaries SIFT 

proposed by Lowe [9]. However, the loss in matching 

performance is a major drawback of this approach. 

In the above approaches, the authors attempted to improve 

the performance of the SIFT algorithm by the modification 

of SIFT. However, for real-time implementation purposes, 

some hardware-based approaches have been proposed in 

recent years. Sinha et al. [1] presented GPU-SIFT, a GPU-

based implementation for the SIFT feature extraction algo-

rithm. The GPU-SIFT has been implemented using the 

OpenGL graphics library and the Cg shading language and 

tested on modern graphics hardware platforms. Their imple-

mentation can process a 640 × 480 video at 10 FPS. The 

weakness of this approach can be attributed to the hardware 

and OpenGL limitations. Some data transfers are required 

between the GPU and the CPU and thus take time for data 

transition. Another approach that also used a GPU was 

developed by Heymann et al. [4]. In this research, the 

authors showed how a feature extraction algorithm can be 

adapted to make use of modern graphics hardware. Their 

experiment used NVIDIA Quadro FX 3400 GPU with 256-

MB video RAM. As a result, the SIFT algorithm can be 

applied to image sequences with 640 × 480 pixels at 20 FPS. 

Further, recently, with the development of embedded 

technology, a new implementation of SIFT on a multi-core 

processor has been proposed by Zhang et al. [2]. In their 

approach, the SIFT algorithm is implemented on multi-core 

processors like dual socket and quad-core systems. The 

obtained result is an average of 45 FPS for a 640 × 480 

video. 

 

 

III. P-SIFT ALGORITHM USING BLOCK 

FILTERING 

 

The SIFT algorithm [10] combines a scale invariant 

region detector and a descriptor based on the gradient 

distribution in the detected regions. The descriptor is 

presented by a 3D histogram of gradient locations and 

orientations. These descriptors (local features) are very dis-
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tinctive and invariant for image scaling or rotation. The 

flowchart of the SIFT algorithm is shown in Fig. 1. In this 

flowchart, there are four major steps [9]: DoG space 

building, keypoint detection and localization, orientation 

assignment, and the keypoint descriptor. DoG space buil-

ding: scale-space extrema detection stage of the filtering 

attempts to equate different viewpoints that are the pro-

jections of a specific 3D object point. They are then 

examined in further detail. The identification of candidate 

locations can be efficiently achieved using the continuous 

“scale space” function, which is based on the Gaussian 

function. The scale space is defined by the following 

function:  

 

   	�	��, �,�� = 		��,�,�� ∗ 
��, ��.         (1) 
 

SIFT is one such technique that locates the scale-space 

extrema from the Gaussian image differences D(x, y, σ) 

given by  

 

   ���, �,�� = ���,�, ���− ���, �,��.       (2) 
                                       

In Eqs. (1) and (2), * denotes the convolution operator, 

G(x, y, σ) represents a variable-scale Gaussian kernel, I(x, y) 

refers to the input image, and k is used for increasing or 

decreasing the scale.  

The construction of the DoG space is illustrated in Fig. 2. 

The initial image is repeatedly convolved with Gaussians 

to generate the set of scale-space images. The adjacent 

Gaussian images are subtracted to produce the DoG images 

as shown on the right of the figure.  

 

 

Fig. 1. The scale invariant feature transform (SIFT) algorithm flow-chart. 
DoG: difference of Gaussian. 

The Gaussian image is down-sampled by a factor of 2 

after each octave, and the process repeated. The convolved 

images are grouped by octave, and the number of DoG per 

octave is fixed. Keypoint detection and localization: To 

detect the local maxima or minima of D(x, y, σ), each 

point is compared with its 8 neighbors on the same scale, 

and its 9 neighbors on the vertical and horizontal scales. If 

this value is larger than all 26 neighbors, it is the maximum; 

if less, it is the minimum.  

The keypoint localization stage attempts to eliminate 

these points from the list of keypoints that have low contrast 

(and are therefore sensitive to noise) or have poorly loca-

lized edges. This is achieved by calculating the Laplacian 

value for each keypoint found in the previous stage. The 

location of the extrema, z, can be expressed as follows:  

 

       � =

��
�
�
��

���

��

��
.                (3) 

 

If the function value at z is below a threshold value, then 

this point is discarded. This removes the extrema that have a 

low contrast.  

Edge extrema that have large principle curvatures but 

small curvatures in the perpendicular direction are elimi-

nated. Using the 2 × 2 Hessian matrix H computed at the 

location and scale of the keypoint, we can compute principle 

curvatures that are proportional to the eigenvalue of H.  

 


 = ���� ���

��� ���

�.               (4) 
 

The elimination criteria can be constructed as follows:  
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�
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Fig. 2. Difference of Gaussian space construction. 
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where r = α/β, and α denotes the eigenvalue with a relatively 

large magnitude and β represents the eigenvalue with a 

smaller magnitude. 

If this inequality is true, the keypoint is rejected. 

The orientation assignment stage in Fig. 1 aims to assign 

a consistent orientation to the keypoints based on the local 

image properties. The keypoint descriptor is represented 

relative to this orientation because it is invariant to the 

rotational movements of the keypoints. The approach 

taken to find an orientation uses the keypoint scale to 

select the Gaussian smoothed image L. The gradient 

magnitude m(x, y) and the orientation θ(x, y) can be com-

puted as follows: 

 

���, ��
= �(��� + 1, �� − ��� − 1,��)� + (���, � + 1� − ���,� − 1�)�, 

                                       (6) 

 

���, �� = ��	�� 
���,���	����,���	
�����,�	������,�	

�.         (7) 
 

Then, we form an orientation histogram from the gradient 

orientations of the sample points, and locate the highest 

peak in the histogram. We use this peak and any other local 

peak within 80% of the height of this peak to create a 

keypoint with the orientation θ(x,y). Some points will be 

assigned multiple orientations. Then, we fit a parabola to the 

three histogram values closest to each peak to interpolate the 

peak’s position. 

The local gradient data, used above, are also used for 

creating keypoint descriptors. The gradient information is 

rotated to line up with the orientation of the keypoint and 

then weighted by a Gaussian kernel with a variance of the 

keypoint scale multiplied by 1.5. These data are then used 

for creating a set of histograms over a window centered on 

the keypoint.  

Keypoint descriptors typically use a set of 16 histograms, 

which are aligned in a 4 × 4 grid, each with 8 orientation 

bins, one for each of the main compass directions and one 

for each of the mid-points of these directions. These result 

in a feature vector containing 128 elements.  

 

 

Table 1. The distribution of computation time (measured in seconds) for 
each stage in the SIFT algorithm 
 

Image 

(pixel) 

SIFT stage 

Build 

DoG 

Detect 

keypoint

Assign 

orientation 

Extract 

keypoint

800 × 600 2.023 0.237 1.105 1.107 

640 × 480 1.884 0.194 0.928 0.839 

256 × 256 0.361 0.032 0.211 0.206 

128 × 128 0.199 0.012 0.142 0.105 

SIFT: scale invariant feature transform, DoG: difference of Gaussian. 

These resulting vectors are known as SIFT keys and are 

used in the nearest-neighbors approach to identify possible 

objects in an image. Collections of keys that agree on a 

possible model are identified. When three or more keys 

agree on the model parameters, the model is evident in the 

image. 

We processed images using the C++ code developed by 

Lowe [9] and then measured the performance. The obtained 

results (Table 1) show that most of the calculations are 

implemented in the first stage: DoG space building. In this 

step, many calculations are repeatedly processed. Based on 

this characteristic, we propose a parallel approach for the 

SIFT algorithm called P-SIFT. The proposed algorithm can 

take advantage of parallelism. The P-SIFT will be described 

in detail in subsection III-B. In subsection III-A, we present 

a new method to calculate the Gaussian filter called block 

filtering. 

 

A. Block Filtering Technique 
 

In the SIFT algorithm, the Gaussian filter is used many 

times during the SIFT feature determination. For calculation 

time reduction purposes, we propose a new method to 

implement the Gaussian convolution. In the proposed 

method, we use a 4 × 4 block to implement the Gaussian 

filter.  

For example, we divide the image into sub-blocks. The 

size of these blocks is 4 × 4 pixels. Then, we apply a half 

kernel to the block; in this case, it is an array with four 

elements. In Fig. 3, we explain the “half kernel” definition. 

Because of the symmetric characteristic of the Gaussian 

kernel, we divide the Gaussian kernel into four “half 

kernels.”  

Fig. 4 demonstrates how these blocks are applied to the 

image. After loading each 4 × 4 block of the input image. 

These “half kernels” are applied in four directions (left, 

right, top, and bottom) to the 4 × 4 block. 

 

 

 

Fig. 3. An illustration of the half kernel. The Gaussian kernel on the left 
side is divided into four “half kernels”, which are shown on the right side. 
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Fig. 4. 4 × 4 block filtering. 

 

 

The proposed Gaussian filter implementation using the 

block filtering technique includes the following four steps:  

1. Load 4 × 4 pixels of image. 

2. Load kernel values.  

3. Compute convolution (left, right, top, and bottom). 

Left, Right: reverse multiplication 

Top: Matrix transpose 

Bottom: Matrix transpose and then reverse multiplication 

4. By repeating all image data, we will obtain the output 

image. 

 

Our previous research [10] indicated that by using the 

block filtering for a Gaussian filter, we can reduce the 

calculation time by half. 

 

B. P-SIFT Algorithm 
 

As evident from the flowchart of the original SIFT 

algorithm (Fig. 5), each keypoint will be assigned an 

orientation and generate a descriptor just after detecting the 

keypoints for one scale. In this case, if we only detect a few 

keypoints in the later iterations of the octaves and the scales, 

there may be very few keypoints for the next computational 

step. This implies that the load imbalance will occur in the 

“Assign Orientation” and “Extract Descriptor” steps for 

each keypoint.  

Moreover, the number of keypoints detected from each 

scale is decreased gradually when the image is down-

sampled. Because of this, load balance can be a serious 

issue in the later stages. 

Further, the original SIFT algorithm is implemented in 

a straightforward manner. In this case, the speed of SIFT 

is quite poor. In the straight implementation, SIFT feature 

detection is repeated for each image in the scale space. 

Therefore, we have to repeat the same operation many times. 

To take advantage of the parallelization characteristic, we 

propose a parallel approach to implement the SIFT algo-

rithm.  

 
Fig. 5. Flowchart of the parallelization scale invariant feature transform 
(P-SIFT). 

 

 

In our approach, we propose a parallel SIFT algorithm (P-

SIFT) to adapt to the SIMD processor architecture. The 

flowchart of P-SIFT is illustrated in Fig. 5. The first step is 

to resize the input image into many images in the scale 

space. In our implementation, the number of images in the 

scale space is changed from 2 to 4. Then, we consider all 

images in the scale space and apply the SIFT feature dete-

ction process simultaneously. 

 

 

IV. SIMD PROCESSOR ARRAY 

ARCHITECTURE 

 

The SIMD pixel processor system [11] exploits the 

benefits of integrating optoelectronic devices into a high-

performance digital processing system. In this system, an 

array of thin-film detectors is integrated on top of and 

electrically interfaced with digital SIMD processing 

elements. The general architecture of a SIMD system is 

depicted in Fig. 6. The program is stored in the array control 

unit, and each instruction is broadcast to every node of the 

system in a lockstep fashion (i.e., via a single instruction 

stream). Each node, in turn, executes the received instruc-

tions on its local data (multiple data stream), while exchang-

ing data with other nodes through the interconnection 

network. 

 

Build DoG space 
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Local memory

Sleep

Decoder

Single Processing Element

 

Fig. 6. Organization of single instruction multiple data (SIMD) parallel 
architecture. ACU: array control unit. 
 

 

Fig. 7. A block diagram of an single instruction multiple data (SIMD) pro-
cessor array. 
 

 

Each SIMD processor node is interconnected to its four 

neighbors through a mesh network closed as a torus. Thus, 

the opposite rows (or columns) of the mesh are connected 

to each other, enabling more powerful communication 

schemes than those available with a standard North-East-

West-South (NEWS) network. The microarchitecture of an 

SIMD processing element (PE) is shown in Fig. 7, along 

with the interconnection network. The 16-bit data path 

includes an adder-subtractor, barrel shifter, and multiply-

accumulator unit. Each PE also includes 64 words of local 

memory. 

Further, each SIMD processor node interfaces with a 

small array of thin film detectors, which is a subset of the 

focal plane array. The instruction set architecture allows a 

single node to address up to 16 × 16 arrays of detectors. 

Each processor incorporates eight-bit sigma-delta analog to 

digital converters to convert light intensities, incident on 

the detectors, into digital values. The SAMPLE instruction 

simultaneously samples all detectors values and makes them 

available for further processing. The SIMD execution model 

allows the entire image projected on many nodes to be 

sampled in a single cycle.  

This monolithic integration is the key feature of the 

SIMD pixel processor system, providing extremely compact, 

high-frame-rate focal plane processing. 

 

 

V. SIMD PROCESSOR ARRAY 

ARCHITECTURE 

 

To execute the P-SIFT algorithm, we consider all pixels 

of the images. By using the specified SIMD array, we 

distribute all pixels into all PEs in which every PE owns 16 

pixels. Assume n is the total number of pixels. As a result, 

the number of PEs involved in the computation is n/16. By 

dividing the pixels among n/16 processors, every PE carries 

out the computation only on the local memory containing 

the 16 owned pixels along with their membership values as 

well as center values. Then, the P-SIFT algorithm is 

implemented on n/16 processors in which some new equa-

tions are required for every PE. This enhances the per-

formance of the P-SIFT algorithm implementation. 

Fig. 8 shows how the P-SIFT algorithm is implemented 

on the SIMD parallel architecture. We divided the algorithm 

into the following six steps: 

1. Detect the input image: Distribute the pixels to all 

processors. 

2. Resize image: Resize the input image to images in the 

scale space. Each pixel of the images in the scale 

space is also distributed to the processors. 

3. Construct DoG space: Compute the Gaussian con-

volution, and construct the DoG space as described in 

Section III. Each pixel of the images in the DoG space 

is stored in the processors. 

 

 

 
Fig. 8. Distribution of image data points to each PE node (N) in which 
PEs hold 4 × 4 pixels and all PEs work in parallel with a torus 

interconnection network. PE: processing element, SIFT: scale invariant 
feature transform, DoG: difference of Gaussian. 
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4. Detect the keypoints from the images in the DoG space. 

5. For each keypoint, we assign the orientation accor-

ding to Eqs. (6) and (7). 

 

Finally, we define the descriptor of a keypoint. Each 

keypoint descriptor is represented by a vector with 128 

elements. 

 

 

VI. PERFORMANCE EVALUATION 

 

To evaluate the performance of the proposed algorithm, 

we use a cycle-accurate SIMD simulator. We developed the 

P-SIFT algorithm in the respective assembly languages for 

the SIMD processor array. In this study, the image size of 

256 × 256 pixels is used. For a fixed 256 × 256 pixel system, 

because each PE contains 4 × 4 pixels, 4,096 PEs are used. 

We summarize the parameters of the system configuration in 

Table 2.  

 

 

Table 2. System parameters 

Parameter Value 

Number of PEs 4,096 

Pixels/PE 16 

Memory/PE (word) 256 (32-bit word) 

VLSI technology (nm) 100 

Clock frequency (MHz) 150 

Interconnection network Torus 

intALU/intMLU/Barrel 

Shifter/intMACC/Comm 
1/1/1/1/1 

PE: processing element, VLSI: very large scale integration ALU: 

arithmetic logic unit, MLU: memory logic unit, MACC: multiply-

accumulator, Comm: communication. 

 

 

 

      (a)                       (b)                       (c) 

Fig. 9. Features detected by scale invariant feature transform algorithm 
with a changing number of scales. (a) 2 octaves, (b) 3 octaves, and (c) 4 
octaves. 

 

 

Fig. 10. Test images. 

The metrics of execution time and sustained throughput 

of each case form the basis of the study comparison, defined 

in (8) and (9): 

Execution time 
 

          		����� � �

��
 .                   (8) 

 

Sustained throughput 

 

         �� � �����.
.���

�����
�
�	

���

�,            (9) 

 

where C denotes the cycle count, fk represents the clock 

frequency, Oexec refers to the number of executed operations, 

U denotes the system utilization, and NPE represents the 

number of processing elements. 

Fig. 9 shows the detected SIFT features in the case of a 

Lena image. As the number of scales increases, the detected 

SIFT features become more precise. 

In this experiment, we use three different images (1, 2, 

and 3) as presented in Fig. 10. The number of octaves is also 

changed to 2, 3, and 4 in order to evaluate the complexity of 

the SIFT algorithm. 

Table 3 summarizes the execution parameters for each 

image in the 4,096-PE system. Scalar instructions control 

the processor array. Vector instructions, performed on the 

processor array, execute the algorithm in parallel. System 

Utilization is calculated as the average number of active 

processing elements. The algorithm operates with a System 

Utilization of 54% on average, resulting in a high sustained 

throughput. Overall, our parallel implementation supports 

sufficient real-time performance (1.03 ms) and provides 

efficient processing for the SIFT algorithm. 

 

 

 

Fig. 11. Performance comparison between our proposed implementation 
and the other implementations. FPS: frames per second, GPU: graphic 
processing unit, SIFT: scale invariant feature transform, SIMD: single 
instruction multiple data. 
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Table 4 shows the distribution of vector instructions for 

the parallel algorithm. Each bar divides the instructions into 

the arithmetic logic unit (ALU), memory (MEM), comm-

unication (COMM), PE activity control unit (MASK), and 

image loading (PIXEL). The ALU and MEM instructions 

are computation cycles, while the COMM and MASK 

instructions are necessary for data distribution and synchro-

nization of the SIMD processor array. The results indicate 

that the proposed algorithm is dominated by ALU, MEM, 

and MASK operations. 

In comparison with previous approaches, we imple-

mented the experiment for a 640 × 480 pixel image. The 

number of octaves is 4. The calculated execution time after 

the implementation is 3.07 ms. Therefore, our proposed 

implementation can process a sequence of 640 × 480 images 

at 1000/3.07 ≈ 326 (FPS). Fig. 11 shows the comparison 

between our parallel implementation with the GPU-SIFT, 

optimization GPU, and the SIFT implementation based on a 

multi-core processor. The results indicate that our proposed 

method can reduce the calculation time by around 32 times 

as compared to the GPU-SIFT method, 16 times as 

compared to the optimization GPU method and 7 times as 

compared to the multi-core-based implementation. These 

results demonstrate that the proposed parallel approach 

supports fast processing and provides reliable and efficient 

processing for SIFT implementation. 

 

VII. CONCLUSION 

 

Recent advances in a wide range of applications of the 

SIFT algorithm in the field of computer vision require an 

increase in computational throughput and efficiency. These 

increased demands have become an important challenge in 

implementing the SIFT algorithm in real-time applications. 

In this paper, a parallel implementation of the P-SIFT 

algorithm using block filtering based on a SIMD pixel 

processor was presented. By using the SIMD pixel pro-

cessor system, we fully exploited the available parallelism 

of the P-SIFT algorithm, primarily in the DoG space 

construction step. The obtained average processing speed 

was 326 FPS for images with 640 × 480 pixels. In comp-

arison with the previous implementation [8, 11], the 

proposed method was 30 times faster than the GPU and 7 

times faster than the multicore implementation. In this 

research, we simulated the SIFT algorithm in the SIMD 

pixel processor. From the obtained performance result, we 

concluded that an actual implementation on hardware 

promises a good solution to implement the SIFT algorithm 

in real-time applications. The monolithic design and SIMD 

operation node allowed the FPS rate to be sustained at 

variable image sizes. The bandwidth bottleneck between 

the detector array and parallel processors did not exist 

even when the image size was increased. The experiment 

Table 3. Algorithm performance on a 4,096-PE system running at 150 MHz 

Image 
Vector 

Instruction 

Scalar 

Instruction 

System 

Utilization (%)

Total number of 

cycles 

Texec 

(ms) 

Sustained 

Throughput (Gops/s) 

Image 1 Octave = 2 61,163 18,798 52.3 79,916 0.53 247 

Octave = 3 89,239 28,196 54.6 117,435 0.78 255 

Octave = 4 115,503 37,593 55.2 153,096 1.02 256 

Image 2 Octave = 2 67,589 18,804 52.8 86,393 0.58 252 

Octave = 3 90,473 28,538 54.9 119,011 0.79 257 

Octave = 4 116,169 37,725 55.9 153,894 1.03 258 

Image 3 Octave = 2 67,993 18,867 52.8 86,860 0.58 253 

Octave = 3 90,081 28,914 55.1 119,715 0.80 254 

Octave = 4 116,437 37,885 56.3 154,322 1.03 261 

 

Table 4. The distribution (measured in %) of vector instructions for the algorithm 

Image 
Instruction distribution 

ALU MEM COMM MASK PIXEL 

Image 1 Octave = 2 52.794 22.137 7.220 17.749 0.098 

Octave = 3 55.291 18.936 7.442 18.247 0.099 

Octave = 4 55.912 17.539 7.646 18.797 0.103 

Image 2 Octave = 2 57.185 20.130 6.533 16.061 0.088 

Octave = 3 55.670 18.899 7.321 17.009 0.098 

Octave = 4 56.165 17.439 7.602 18.690 0.102 

Image 3 Octave = 2 57.439 20.010 6.494 15.966 0.088 

Octave = 3 55.830 18.831 7.295 17.944 0.098 

Octave = 4 56.266 17.399 7.585 18.646 0.102 

ALU: arithmetic logic unit, MEM: memory, COMM: communication, MASK: processing element activity control unit, PIXEL: image loading. 
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results also indicated that the proposed parallel approach 

provided a high-throughput, low-memory implementation 

and reduced the load imbalance. 
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