DOI QR코드

DOI QR Code

Durable and Sustainable Strap Type Electromagnetic Harvester for Tire Pressure Monitoring System

  • Lee, Soobum (Department of Mechanical Engineering, University of Maryland Baltimore County) ;
  • Kim, Dong-Hun (Department of Electrical Engineering, Kyungpook National University)
  • Received : 2013.09.08
  • Accepted : 2013.10.22
  • Published : 2013.12.31

Abstract

A new concept design of electromagnetic energy harvester is proposed for powering a tire pressure monitoring sensor (TPMS). The thin coil strap is attached on the circumferential surface of a rim and a permanent magnet is placed on the brake caliper system. When the wheel rotates, the relative motion between the magnet and the coil generates electrical energy by electromagnetic induction. The generated energy is stored in a storage unit (rechargeable battery, capacitor) and used for TPMS operation and wireless signal transmission. Innovative layered design of the strap is provided for maximizing energy generation. Finite Element Method (FEM) and experiment results on the proposed design are compared to validate the proposed design; further, the method for design improvement is discussed. The proposed design is excellent in terms of durability and sustainability because it utilizes the everlasting rotary motion throughout the vehicle life and does not require material deformation.

Keywords

References

  1. US DOT National Highway Traffic Safety Administration. Federal motor vehicle safety standards; tire pressure monitoring systems; controls and displays (2005); Available from: http://www.nhtsa.gov/cars/rules/rulings/tpmsfinalrule.6/tpmsfinalrule.6.html
  2. European Commission Enterprise and Industry. Paving the way for safer and greener cars, Enterprise & Industry Online Magazine (2008); Available from: http://ec.europa.eu/enterprise/magazine/articles/better-regulation/article_7009_en.htm
  3. Global Industry Analysts Inc. Tire pressure monitoring systems (TPMS) - a global strategic business report (2011); Available from: http://www.strategyr.com/Tire_Pressure_Monitoring_Systems_TPMS_Market_Report.asp
  4. Wikipedia. Tire-pressure monitoring system (2011); Available from: http://en.wikipedia.org/wiki/Tire-pressure_monitoring_system
  5. PowerMEMS, S. Roundy, Proc. (2008) pp 1-6.
  6. M. Lohndorf, T. Kvister, E. Westby, and E. Halvorsen, Proc. Power MEMS, Nov. 28-29, Freiburg, Germany (2007) pp 331-334.
  7. A. Erturk and D. J. Inman, Piezoelectric Energy Harvesting, Wiley (2011).
  8. S. Priya and D. J. Inman, Energy Harvesting Technologies, Springer Verlag (2008).
  9. D. V. Nowicki and C. A. Munroe, US Patent 5945908 (1999).
  10. L. Pinna, M. Valle, and G. M. Bo, Proc. 3th Italian Conf. Sens. Microsyst. (2009) pp 450-455.
  11. Q. Zheng, H. Tu, A. Agee, and Y. Xu, Proc. Power-MEMS (2009) pp 403-406.
  12. G. Manla, N. M. White, and J. Tudor, Proc. Transducers, June 21-25, Denver, CO, USA (2009) pp 1389-1392.
  13. Y. Hu, C. Xu, Y. Zhang, L. Lin, R. L. Snyder, and Z. L. Wang, Adv. Mater. 23, 4068 (2011). https://doi.org/10.1002/adma.201102067
  14. T. Kazmierski, Energy Harvesting Systems: Principles, Modeling and Applications, Springer Verlag (2010).
  15. S. B. DiMauro and A. C. Lesesky, US Patent 8405235 B2 (2010).
  16. J.-H. Huang, US Patent 20100156618 A1 (2009).
  17. H. Theuss and K. Elian, US Patent 20090256361 A1 (2008).
  18. G. Hatipoglu and H. Urey, Smart Mater. Struct. 19, 015022 (2010). https://doi.org/10.1088/0964-1726/19/1/015022
  19. J. C. Park, D. H. Bang, and J. Y. Park, IEEE Trans. Magn. 46, 1937 (2010). https://doi.org/10.1109/TMAG.2010.2044757
  20. Y. J. Wang, C. D. Chen, and C. K. Sung, Sens. Actuators: A 159, 196 (2010). https://doi.org/10.1016/j.sna.2009.12.007
  21. A. S. Holmes, G. Hong, and K. R. Pullen, J. Microelectromech. S. 14, 54 (2005). https://doi.org/10.1109/JMEMS.2004.839016
  22. C. T. Pan and T. T. Wu, Journal of J. Micromech. Microeng. 17, 120 (2007). https://doi.org/10.1088/0960-1317/17/1/016
  23. L. D. Liao, P. C. P. Chao, J. T. Chen, W. D. Chen, W. H. Hsu, and C. W. Chiu, Magnetics, IEEE Trans. Magn. 45, 4621 (2009). https://doi.org/10.1109/TMAG.2009.2023999
  24. A. Khaligh, P. Zeng, and C. Zheng, IEEE Trans. Ind. Electron. 57, 850 (2010). https://doi.org/10.1109/TIE.2009.2024652
  25. Wikipedia. Neodymium magnet (2011); Available from: http://en.wikipedia.org/wiki/Neodymium_magnet
  26. Wikipedia. Electrical resistivity and conductivity (2011); Available from: http://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity
  27. S. Lee, Korea Patent KR/10-1310461, 2013.
  28. Less EMF. Guidelines for installing magnetic shielding (2011); Available from: http://www.lessemf.com/guidelines.pdf
  29. S. Yuan and K. P. Maurer, US Patent 20120001476 A1 (2012).
  30. J. D. D. Silva and M. Tiraboschi, US Patent 20120146395 (2012).

Cited by

  1. Energy Harvesting Technologies for Tire Pressure Monitoring Systems vol.5, pp.7, 2015, https://doi.org/10.1002/aenm.201401787
  2. A Triboelectric Self-Powered Sensor for Tire Condition Monitoring: Concept, Design, Fabrication, and Experiments vol.19, pp.12, 2017, https://doi.org/10.1002/adem.201700318