DOI QR코드

DOI QR Code

Surveillance of wild birds for avian influenza virus in Korea

야생조류에 대한 조류인플루엔자 예찰의 중요성과 연구 동향

  • Received : 2013.09.11
  • Accepted : 2013.11.05
  • Published : 2013.12.31

Abstract

Avian influenza viruses (AIV) have been isolated from a wide range of domestic and wild birds. Wild birds, predominantly ducks, geese and gulls form the reservoir of AIV in nature. The viruses in wild bird populations are a potential source of widespread infections in poultry. Active surveillance for AIV infection provides information regarding AIV distribution, and global AIV surveillance can play a key role in the early recognition of highly pathogenic avian influenza (HPAI). Since 2003 in Korea, there have been four H5N1 HPAI outbreaks caused by clade 2.5, 2.2 and 2.3.2. Therefore, improvement of AIV surveillance strategy is required to detect HPAI viruses effectively. This article deals with the major events establishing the role of wild birds in the natural history of influenza in Korea. We highlighted the need for continuous surveillance in wild birds and characterization of these viruses to understand AIV epidemiology and host ecology in Korea.

Keywords

References

  1. Alerstam T. Detours in bird migration. J Theor Biol 2001, 209, 319-331. https://doi.org/10.1006/jtbi.2001.2266
  2. Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine 2007, 25, 5637-5644. https://doi.org/10.1016/j.vaccine.2006.10.051
  3. Brown JD, Stallknecht DE, Beck JR, Suarez DL, Swayne DE. Susceptibility of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses. Emerg Infect Dis 2006, 12, 1663-1670. https://doi.org/10.3201/eid1211.060652
  4. Brown JD, Stallknecht DE, Swayne DE. Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage. Emerg Infect Dis 2008, 14, 136-142. https://doi.org/10.3201/eid1401.070740
  5. Brown JD, Stallknecht DE, Swayne DE. Experimental infections of herring gulls (Larus argentatus) with H5N1 highly pathogenic avian influenza viruses by intranasal inoculation of virus and ingestion of virus-infected chicken meat. Avian Pathol 2008, 37, 393-397. https://doi.org/10.1080/03079450802216595
  6. Brown JD, Stallknecht DE, Valeika S, Swayne DE. Susceptibility of wood ducks to H5N1 highly pathogenic avian influenza virus. J Wildl Dis 2007, 43, 660-667. https://doi.org/10.7589/0090-3558-43.4.660
  7. Chen H, Smith GJD, Zhang SY, Qin K, Wang J, Li KS, Webster RG, Peiris JSM, Guan Y. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 2005, 436, 191-192. https://doi.org/10.1038/nature03974
  8. Choi JG, Kang HM, Jeon WJ, Choi KS, Kim KI, Song BM, Lee HS, Kim JH, Lee YJ. Characterization of clade 2.3.2.1 H5N1 highly pathogenic avian influenza viruses isolated from wild birds (Mandarin duck and Eurasian eagle owl) in 2010 in Korea. Viruses 2013, 5, 1153-1174. https://doi.org/10.3390/v5041153
  9. Choi YK, Seo SH, Kim JA, Webby RJ, Webster RG. Avian influenza viruses in Korean live poultry markets and their pathogenic potential. Virology 2005, 332, 529-537. https://doi.org/10.1016/j.virol.2004.12.002
  10. Das A, Spackman E, Pantin-Jackwood MJ, Suarez DL. Removal of real-time reverse transcription polymerase chain reaction (RT-PCR) inhibitors associated with cloacal swab samples and tissues for improved diagnosis of Avian influenza virus by RT-PCR. J Vet Diagn Invest 2009, 21, 771-778. https://doi.org/10.1177/104063870902100603
  11. Das A, Spackman E, Senne D, Pedersen J, Suarez DL. Development of an internal positive control for rapid diagnosis of avian influenza virus infections by real-time reverse transcription-PCR with lyophilized reagents. J Clin Microbiol 2006, 44, 3065-3073. https://doi.org/10.1128/JCM.00639-06
  12. Ducatez MF, Olinger CM, Owoade AA, De Landtsheer S, Ammerlaan W, Niesters HGM, Osterhaus ADME, Fouchier RAM, Muller CP. Avian flu: multiple introductions of H5N1 in Nigeria. Nature 2006, 442, 37. https://doi.org/10.1038/442037a
  13. Ferguson-Noel N, Laibinis VA, Farrar M. Influence of swab material on the detection of Mycoplasma gallisepticum and Mycoplasma synoviae by real-time PCR. Avian Dis 2012, 56, 310-314. https://doi.org/10.1637/9972-102411-Reg.1
  14. Gaidet N, Newman SH, Hagemeijer W, Dodman T, Cappelle J, Hammoumi S, De Simone L, Takekawa JY. Duck migration and past influenza A (H5N1) outbreak areas. Emerg Infect Dis 2008, 14, 1164-1166. https://doi.org/10.3201/eid1407.071477
  15. Ip HS, Flint PL, Franson JC, Dusek RJ, Derksen DV, Gill RE Jr, Ely CR, Pearce JM, Lanctot RB, Matsuoka SM, Irons DB, Fischer JB, Oates RM, Petersen MR, Fondell TF, Rocque DA, Pedersen JC, Rothe TC. Prevalence of Influenza A viruses in wild migratory birds in Alaska: patterns of variation in detection at a crossroads of intercontinental flyways. Virol J 2008, 5, 71. https://doi.org/10.1186/1743-422X-5-71
  16. Kang HM, Jeong OM, Kim MC, Kwon JS, Paek MR, Choi JG, Lee EK, Kim YJ, Kwon JH, Lee YJ. Surveillance of avian influenza virus in wild bird fecal samples from South Korea, 2003-2008. J Wildl Dis 2010, 46, 878-888. https://doi.org/10.7589/0090-3558-46.3.878
  17. Keawcharoen J, van Riel D, van Amerongen G, Bestebroer T, Beyer WE, van Lavieren R, Osterhaus ADME, Fouchier RAM, Kuiken T. Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis 2008, 14, 600-607. https://doi.org/10.3201/eid1404.071016
  18. Kim HR, Kim BS, Bae YC, Moon OK, Oem JK, Kang HM, Choi JG, Lee OS, Lee YJ. H5N1 subtype highly pathogenic avian influenza virus isolated from healthy mallard captured in South Korea. Vet Microbiol 2011, 151, 386-389. https://doi.org/10.1016/j.vetmic.2011.03.004
  19. Kim HR, Lee YJ, Park CK, Oem JK, Lee OS, Kang HM, Choi JG, Bae YC. Highly pathogenic avian influenza (H5N1) outbreaks in wild birds and poultry, South Korea. Emerg Infect Dis 2012, 18, 480-483. https://doi.org/10.3201/1803.111490
  20. Kim HR, Park CK, Lee YJ, Woo GH, Lee KK, Oem JK, Kim SH, Jean YH, Bae YC, Yoon SS, Roh IS, Jeong OM, Kim HY, Choi JS, Byun JW, Song YK, Kwon JH, Joo YS. An outbreak of highly pathogenic H5N1 avian influenza in Korea, 2008. Vet Microbiol 2010, 141, 362-366. https://doi.org/10.1016/j.vetmic.2009.09.011
  21. Kim JK, Negovetich NJ, Forrest HL, Webster RG. Ducks: the "Trojan horses" of H5N1 influenza. Influenza Other Respir Viruses 2009, 3, 121-128. https://doi.org/10.1111/j.1750-2659.2009.00084.x
  22. Kim MC, Jeong OM, Kang HM, Paek MR, Kwon JS, Song CS, Kwon YK, Lee JG, Kwon JH, Lee YJ. Pathogenicity and transmission studies of H7N7 avian influenza virus isolated from feces of magpie origin in chickens and magpie. Vet Microbiol 2010, 141, 268-274. https://doi.org/10.1016/j.vetmic.2009.09.027
  23. Krauss S, Webster RG. Avian influenza virus surveillance and wild birds: past and present. Avian Dis 2010, 54, 394-398. https://doi.org/10.1637/8703-031609-Review.1
  24. Kwon YK, Joh SJ, Kim MC, Kang MS, Lee YJ, Kwon JH, Kim JH. The susceptibility of magpies to a highly pathogenic avian influenza virus subtype H5N1. Poult Sci 2010, 89, 1156-1161. https://doi.org/10.3382/ps.2009-00549
  25. Kwon YK, Thomas C, Swayne DE. Variability in pathobiology of South Korean H5N1 high-pathogenicity avian influenza virus infection for 5 species of migratory waterfowl. Vet Pathol 2010, 47, 495-506. https://doi.org/10.1177/0300985809359602
  26. Lee DH, Kwon JH, Park JK, Lee YN, Yuk SS, Lee JB, Park SY, Choi IS, Song CS. Characterization of lowpathogenicity H5 and H7 Korean avian influenza viruses in chickens. Poult Sci 2012, 91, 3086-3090. https://doi.org/10.3382/ps.2012-02543
  27. Lee DH, Lee HJ, Lee YJ, Kang HM, Jeong OM, Kim MC, Kwon JS, Kwon JH, Kim CB, Lee JB, Park SY, Choi IS, Song CS. DNA barcoding techniques for avian influenza virus surveillance in migratory bird habitats. J Wildl Dis 2010, 46, 649-654. https://doi.org/10.7589/0090-3558-46.2.649
  28. Lee DH, Lee HJ, Lee YN, Lee YJ, Jeong OM, Kang HM, Kim MC, Kwon JS, Kwon JH, Lee JB, Park SY, Choi IS, Song CS. Application of DNA barcoding technique in avian influenza virus surveillance of wild bird habitats in Korea and Mongolia. Avian Dis 2010, 54, 677-681. https://doi.org/10.1637/8783-040109-ResNote.1
  29. Lee DH, Lee HJ, Lee YN, Park JK, Lim TH, Kim MS, Youn HN, Lee JB, Park SY, Choi IS, Song CS. Evidence of intercontinental transfer of North American lineage avian influenza virus into Korea. Infect Genet Evol 2011, 11, 232-236. https://doi.org/10.1016/j.meegid.2010.09.012
  30. Lee DH, Park JK, Youn HN, Lee YN, Lim TH, Kim MS, Lee JB, Park SY, Choi IS, Song CS. Surveillance and isolation of HPAI H5N1 from wild Mandarin ducks (Aix galericulata). J Wildl Dis 2011, 47, 994-998. https://doi.org/10.7589/0090-3558-47.4.994
  31. Lee DH, Song CS. H9N2 avian influenza virus in Korea: evolution and vaccination. Clin Exp Vaccine Res 2013, 2, 26-33. https://doi.org/10.7774/cevr.2013.2.1.26
  32. Lee YJ, Choi YK, Kim YJ, Song MS, Jeong OM, Lee EK, Jeon WJ, Jeong W, Joh SJ, Choi K, Her M, Kim MC, Kim A, Kim MJ, Ho Lee E, Oh TG, Moon HJ, Yoo DW, Kim JH, Sung MH, Poo H, Kwon JH, Kim CJ. Highly pathogenic avian influenza virus (H5N1) in domestic poultry and relationship with migratory birds, South Korea. Emerg Infect Dis 2008, 14, 487-490. https://doi.org/10.3201/eid1403.070767
  33. Lee YJ, Shin JY, Song MS, Lee YM, Choi JG, Lee EK, Jeong OM, Sung HW, Kim JH, Kwon YK, Kwon JH, Kim CJ, Webby RJ, Webster RG, Choi YK. Continuing evolution of H9 influenza viruses in Korean poultry. Virology 2007, 359, 313-323. https://doi.org/10.1016/j.virol.2006.09.025
  34. Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang X, Zhang X, Zhao D, Wang G, Feng Y, Ma J, Liu W, Wang J, Gao GF. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 2005, 309, 1206. https://doi.org/10.1126/science.1115273
  35. Makarova NV, Kaverin NV, Krauss S, Senne D, Webster RG. Transmission of Eurasian avian H2 influenza virus to shorebirds in North America. J Gen Virol 1999, 80, 3167-3171. https://doi.org/10.1099/0022-1317-80-12-3167
  36. Monteiro L, Bonnemaison D, Vekris A, Petry KG, Bonnet J, Vidal R, Cabrita J, Megraud F. Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J Clin Microbiol 1997, 35, 995-998.
  37. Munster VJ, Veen J, Olsen B, Vogel R, Osterhaus ADME, Fouchier RAM. Towards improved influenza A virus surveillance in migrating birds. Vaccine 2006, 24, 6729-6733. https://doi.org/10.1016/j.vaccine.2006.05.060
  38. Newman SH, Iverson SA, Takekawa JY, Gilbert M, Prosser DJ, Batbayar N, Natsagdorj T, Douglas DC. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in Eastern Asia. PLoS One 2009, 4, e5729. https://doi.org/10.1371/journal.pone.0005729
  39. Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus ADME, Fouchier RAM. Global patterns of influenza A virus in wild birds. Science 2006, 312, 384-388. https://doi.org/10.1126/science.1122438
  40. Ramey AM, Pearce JM, Flint PL, Ip HS, Derksen DV, Franson JC, Petrula MJ, Scotton BD, Sowl KM, Wege ML, Trust KA. Intercontinental reassortment and genomic variation of low pathogenic avian influenza viruses isolated from northern pintails (Anas acuta) in Alaska: examining the evidence through space and time. Virology 2010, 401, 179-189. https://doi.org/10.1016/j.virol.2010.02.006
  41. Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors - occurrence, properties and removal. J Appl Microbiol 2012, 113, 1014-1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x
  42. Soda K, Usui T, Uno Y, Yoneda K, Yamaguchi T, Ito T. Pathogenicity of an H5N1 highly pathogenic avian influenza virus isolated in the 2010-2011 winter in Japan to Mandarin ducks. J Vet Med Sci 2013, 75, 619-624. https://doi.org/10.1292/jvms.12-0487
  43. Suarez DL, Das A, Ellis E. Review of rapid molecular diagnostic tools for avian influenza virus. Avian Dis 2007, 51 (Suppl 1), 201-208. https://doi.org/10.1637/7732-101006-REGR.1
  44. Takekawa JY, Newman SH, Xiao X, Prosser DJ, Spragens KA, Palm EC, Yan B, Li T, Lei F, Zhao D, Douglas DC, Muzaffar SB, Ji W. Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks. Avian Dis 2010, 54 (Suppl 1), 466-476. https://doi.org/10.1637/8914-043009-Reg.1
  45. Takekawa JY, Prosser DJ, Collins BM, Douglas DC, Perry WM, Yan B, Ze L, Hou Y, Lei F, Li T, Li Y, Newman SH. Movements of wild ruddy shelducks in the Central Asian flyway and their spatial relationship to outbreaks of highly pathogenic avian influenza H5N1. Viruses 2013, 5, 2129-2152. https://doi.org/10.3390/v5092129
  46. Van Ranst M, Lemey P. Genesis of avian-origin H7N9 influenza A viruses. Lancet 2013, 381, 1883-1885. https://doi.org/10.1016/S0140-6736(13)60959-9
  47. Wallensten A, Munster VJ, Elmberg J, Osterhaus ADME, Fouchier RAM, Olsen B. Multiple gene segment reassortment between Eurasian and American lineages of influenza A virus (H6N2) in Guillemot (Uria aalge). Arch Virol 2005, 150, 1685-1692. https://doi.org/10.1007/s00705-005-0543-8
  48. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev 1992, 56, 152-179.
  49. Wee SH, Park CK, Nam HM, Kim CH, Yoon H, Kim SJ, Lee ES, Lee BY, Kim JH, Lee JH, Kim CS. Outbreaks of highly pathogenic avian influenza (H5N1) in the Republic of Korea in 2003/04. Vet Rec 2006, 158, 341-344. https://doi.org/10.1136/vr.158.10.341
  50. Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 1997, 63, 3741-3751.
  51. Winker K, McCracken KG, Gibson DD, Pruett CL, Meier R, Huettmann F, Wege M, Kulikova IV, Zhuravlev YN, Perdue ML, Spackman E, Suarez DL, Swayne DE. Movements of birds and avian influenza from Asia into Alaska. Emerg Infect Dis 2007, 13, 547-552. https://doi.org/10.3201/eid1304.061072
  52. Yamaguchi N, Hiraoka E, Fujita M, Hijikata N, Ueta M, Takagi K, Konno S, Okuyama M, Watanabe Y, Osa Y, Morishita E, Tokita K, Umada K, Fujita G, Higuchi H. Spring migration routes of mallards (Anas platyrhynchos) that winter in Japan, determined from satellite telemetry. Zoolog Sci 2008, 25, 875-881. https://doi.org/10.2108/zsj.25.875

Cited by

  1. 야생동물위치추적기(WT-200)를 이용한 청둥오리의 이동거리 및 행동권 연구 vol.28, pp.6, 2013, https://doi.org/10.13047/kjee.2014.28.6.642
  2. 조류 인플루엔자와 구제역 바이러스 차단방역을 위한 미산성 차아염소산수의 소독 조건 vol.59, pp.2, 2013, https://doi.org/10.14405/kjvr.2019.59.2.101