DOI QR코드

DOI QR Code

Alternatively activated M2 macrophages increase in early stages of experimental autoimmune myocarditis in Lewis rats

  • Oh, Hanseul (Laboratory of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute) ;
  • Ahn, Meejung (School of Medicine, Jeju National University) ;
  • Matsumoto, Yoh (Department of Immunotherapy Development, Tokyo Metropolitan Institute of Medical Science) ;
  • Shin, Taekyun (Laboratory of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute)
  • Received : 2013.05.16
  • Accepted : 2013.10.16
  • Published : 2013.12.31

Abstract

To better understand the role of macrophages in early stages of experimental autoimmune myocarditis (EAM), we compared the expression of inducible nitric oxide synthase (iNOS) and arginase-1, markers for classically activated M1 and alternatively activated M2 macrophages, respectively, in the hearts of EAM-affected and control rats. Immunohistochemical evidence revealed that both iNOS-positive and arginase 1-positive macrophages were found in EAM lesions, while some cells were co-localized with both markers. This finding suggests that the increased level of arginase-1, which is partly from M2 macrophages, contributes to the modulation of EAM, possibly through the reduction of nitric oxide in the lesion.

Keywords

References

  1. Ahn M, Kim H, Matsumoto Y, Shin T. Increased expression of caveolin-1 and -2 in the hearts of Lewis rats with experimental autoimmune myocarditis. Autoimmunity 2006, 39, 489-495. https://doi.org/10.1080/08916930600929321
  2. Ahn M, Yang W, Kim H, Jin J, Moon C, Shin T. Immunohistochemical study of arginase-1 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Brain Res 2012, 1453, 77-86. https://doi.org/10.1016/j.brainres.2012.03.023
  3. Blyszczuk P, Berthonneche C, Behnke S, Glonkler M, Moch H, Pedrazzini T, Lüscher TF, Eriksson U, Kania G. Nitric oxide synthase 2 is required for conversion of pro-fibrogenic inflammatory $CD133^+$ progenitors into $F4/80^+$ macrophages in experimental autoimmune myocarditis. Cardiovasc Res 2013, 97, 219-229. https://doi.org/10.1093/cvr/cvs317
  4. Cihakova D, Rose NR. Pathogenesis of myocarditis and dilated cardiomyopathy. Adv Immunol 2008, 99, 95-114. https://doi.org/10.1016/S0065-2776(08)00604-4
  5. Gong D, Shi W, Yi S, Chen H, Groffen J, Heisterkamp N. $TGF{\beta}$ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol 2012, 13, 31. https://doi.org/10.1186/1471-2172-13-31
  6. Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos CE, Schledzewski K, Goerdt S. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scand J Immunol 2001, 53, 386-392. https://doi.org/10.1046/j.1365-3083.2001.00885.x
  7. Hanawa H, Inomata T, Okura Y, Hirono S, Ogawa Y, Izumi T, Kodama M, Aizawa Y. T cells with similar Tcell receptor β-chain complementarity-determining region 3 motifs infiltrate inflammatory lesions of synthetic peptides inducing rat autoimmune myocarditis. Circ Res 1998, 83, 133-140. https://doi.org/10.1161/01.RES.83.2.133
  8. Ho VWH, Sly LM. Derivation and characterization of murine alternatively activated (M2) macrophages. Methods Mol Biol 2009, 531, 173-185. https://doi.org/10.1007/978-1-59745-396-7_12
  9. Ishiyama S, Hiroe M, Nishikawa T, Shimojo T, Abe S, Fujisaki H, Ito H, Yamakawa K, Kobayashi N, Kasajima T, Marumo F. The Fas/Fas ligand system is involved in the pathogenesis of autoimmune myocarditis in rats. J Immunol 1998, 161, 4695-4701.
  10. Johann AM, Barra V, Kuhn AM, Weigert A, von Knethen A, Brune B. Apoptotic cells induce arginase II in macrophages, thereby attenuating NO production. FASEB J 2007, 21, 2704-2712. https://doi.org/10.1096/fj.06-7815com
  11. Kodama M, Matsumoto Y, Fujiwara M. In vivo lymphocyte-mediated myocardial injuries demonstrated by adoptive transfer of experimental autoimmune myocarditis. Circulation 1992, 85, 1918-1926. https://doi.org/10.1161/01.CIR.85.5.1918
  12. Kodama M, Matsumoto Y, Fujiwara M, Masani F, Izumi T, Shibata A. A novel experimental model of giant cell myocarditis induced in rats by immunization with cardiac myosin fraction. Clin Immunol Immunopathol 1990, 57, 250-262. https://doi.org/10.1016/0090-1229(90)90039-S
  13. Kodama M, Matsumoto Y, Fujiwara M, Zhang S, Hanawa H, Itoh E, Tsuda T, Izumi T, Shibata A. Characteristics of giant cells and factors related to the formation of giant cells in myocarditis. Circ Res 1991, 69, 1042-1050. https://doi.org/10.1161/01.RES.69.4.1042
  14. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 2009, 27, 451-483. https://doi.org/10.1146/annurev.immunol.021908.132532
  15. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 2008, 13, 453-461. https://doi.org/10.2741/2692
  16. Matsumoto Y. New approach to immunotherapy against organ-specific autoimmune diseases with T cell receptor and chemokine receptor DNA vaccines. Curr Drug Targets Immune Endocr Metabol Disord 2005, 5, 73-77. https://doi.org/10.2174/1568008053174732
  17. Mori M, Gotoh T. Arginine metabolic enzymes, nitric oxide and infection. J Nutr 2004, 134, 2820S-2825S. https://doi.org/10.1093/jn/134.10.2820S
  18. Murakami U, Uchida K, Hiratsuka T. Cardiac myosin from pig heart ventricle. Purification and enzymatic properties. J Biochem 1976, 80, 611-619. https://doi.org/10.1093/oxfordjournals.jbchem.a131316
  19. Neumann H, Kotter MR, Franklin RJM. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 2009, 132, 288-295.
  20. Okura Y, Yamamoto T, Goto S, Inomata T, Hirono S, Hanawa H, Feng L, Wilson CB, Kihara I, Izumi T, Shibata A, Aizawa Y, Seki S, Abo T. Characterization of cytokine and iNOS mRNA expression in situ during the course of experimental autoimmune myocarditis in rats. J Mol Cell Cardiol 1997, 29, 491-502. https://doi.org/10.1016/S0735-1097(97)87726-1
  21. Ratcliffe NR, Hutchins J, Barry B, Hickey WF. Chronic myocarditis induced by T cells reactive to a single cardiac myosin peptide: persistent inflammation, cardiac dilatation, myocardial scarring and continuous myocyte apoptosis. J Autoimmun 2000, 15, 359-367. https://doi.org/10.1006/jaut.2000.0432
  22. Rutschman R, Lang R, Hesse M, Ihle JN, Wynn TA, Murray PJ. Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J Immunol 2001, 166, 2173-2177. https://doi.org/10.4049/jimmunol.166.4.2173
  23. Shin T, Ahn M, Kim H, Kim HM, Matsumoto Y. Increased expression of osteopontin in the heart tissue of Lewis rats with experimental autoimmune myocarditis. J Vet Med Sci 2006, 68, 379-382. https://doi.org/10.1292/jvms.68.379
  24. Shin T, Ahn M, Matsumoto Y. Mechanism of experimental autoimmune encephalomyelitis in Lewis rats: recent insights from macrophages. Anat Cell Biol 2012, 45, 141-148. https://doi.org/10.5115/acb.2012.45.3.141
  25. Shin T, Tanuma N, Kim S, Jin J, Moon C, Kim K, Kohyama K, Matsumoto Y, Hyun B. An inhibitor of inducible nitric oxide synthase ameliorates experimental autoimmune myocarditis in Lewis rats. J Neuroimmunol 1998, 92, 133-138. https://doi.org/10.1016/S0165-5728(98)00194-5
  26. Suzuki J, Ogawa M, Watanabe R, Morishita R, Hirata Y, Nagai R, Isobe M. Autoimmune giant cell myocarditis - clinical characteristics, experimental models and future treatments. Expert Opin Ther Targets 2011, 15, 1163-1172. https://doi.org/10.1517/14728222.2011.601294
  27. Suzuki K, Izumi T, Iwanaga T, Fujita T, Shibata A. Multinucleated giant cells undergoing apoptosis in experimental autoimmune myocarditis. Arch Histol Cytol 1995, 58, 231-241. https://doi.org/10.1679/aohc.58.231
  28. Watanabe K, Sukumaran V, Veeraveedu PT, Thandavarayan RA, Gurusamy N, Ma M, Arozal W, Sari FR, Lakshmanan AP, Arumugam S, Soetikno V, Rajavel V, Suzuki K. Regulation of inflammation and myocardial fibrosis in experimental autoimmune myocarditis. Inflamm Allergy Drug Targets 2011, 10, 218-225. https://doi.org/10.2174/187152811795564091

Cited by

  1. Immunohistochemical analysis of periostin in the hearts of Lewis rats with experimental autoimmune myocarditis vol.82, pp.10, 2020, https://doi.org/10.1292/jvms.20-0225