DOI QR코드

DOI QR Code

The Effects of Magnetic Field on TLD Glow Curve

자기장이 열형광선량계의 글로우 곡선에 미치는 영향

  • Je, Jaeyong (Department of Radiological Technology, Dong-Eui Institute of Technology) ;
  • Kang, Eunbo (Department of Radiological Technology, Dong-Eui Institute of Technology)
  • 제재용 (동의과학대학교 방사선과) ;
  • 강은보 (동의과학대학교 방사선과)
  • Received : 2013.09.13
  • Accepted : 2013.12.25
  • Published : 2013.12.25

Abstract

Thermoluminescent dosimeter utilizes the fact that when irradiated specimen is heated up, some part of the absorbed energy is emitted from the specimen as light with longer wavelength. This research aims at analyzing the glow curves of four TLD-100 exposed to a magnetic field and those of other four TLD-100 not exposed to one by treating them with heat and irradiating them, which are commonly used as thermoluminescent dosimeter, in the same condition. As the result of the experiment, regarding the electrons captured by irradiation, some of the electrons of lower traps were combined with positive holes of valence band through the exposure to a magnetic field, and the peak size decreased by 48%. The reduction in the size of the lower traps caused the TLD-100 exposed to a magnetic field to display a low level of dose. In addition, low traps estimated activation energies are 1.6 eV and 1.5 eV.

방사선을 조사한 시료를 가열하면 시료로부터 흡수된 에너지의 일부가 더 긴 파장의 빛으로 방출되는 것을 이용한 것이 열형광선량계이다. 본 연구의 목적은 피폭선량계로 널리 이용되는 8개의 TLD-100에 동일한 조건에서 열처리와 방사선을 조사하여 자기장을 노출하지 않은 4개와 자기장에 노출시킨 4개를 글로우 곡선을 분석 하였다. 실험 결과 방사선 조사로 포획된 전자가 자기장 노출에 의해 낮은 트랩의 전자들 중 일부는 가전자대의 정공과 결합하여 48%의 피크 면적이 감소하였다. 낮은 트랩의 면적 감소로 인하여 자기장에 노출된 TLD-100은 낮은 선량을 나타내었다. 또한 낮은 트랩의 활성화 에너지는 1.6 eV와 1.5 eV로 나타났다.

Keywords

References

  1. Wiedemann E and Schmidt GC, Ann. Phys. Chem, Neue Folge Vol. 54, pp. 604, 1895.
  2. Randall JT and Wilkins MHF, Proc. Roy. Soc. London, Vol. A184, pp. 347-390, 1945.
  3. Chen R and Kirsh Y, "Analysis of Thermally Stimulated Processes", Pregamon Press, Oxford, pp. 159, 1981.
  4. Kenneth S and Krane, "Introductory Nuclear Physics", John Wiley and Sons, Inc., pp. 192, 1988.
  5. Pradhan AS, "Radiation Protection Dosimetry", Vol. 13, pp. 153, 1981.
  6. Halperin A and Braner AA, Phys. Rev. Vol. 117, pp. 408, 1960. https://doi.org/10.1103/PhysRev.117.408
  7. Grossweiner LI, J. Appl. Phys. Vol. 24, pp. 1306-1307, 1953. https://doi.org/10.1063/1.1721152
  8. Lushchick CB, Sov. Phys. JETP. Vol. 3, pp.390-399, 1956.
  9. Kim CM, Seo MK, "A Study on the Fabrication and Physical Properties oF Ca2SiO4:La Thermoluminescent Phosphors", J. Korea Soc. Radiol. Vol. 4 No. 4, pp. 7, 2010.
  10. Je JY, Kang EB, "TLD Dose Variation of Magnetic Resonance Imaging Equipment", J. Korea Soc. Radiol. Vol. 6 No. 6, pp. 473-476, 2012. https://doi.org/10.7742/jksr.2012.6.6.473
  11. Ixquiac-Cabrera JM, Brandan ME et al., "Effect of Spectral Shap in the relative Efficiency of LiF:Mg,Ti Exposed to 20 keV Effective Energy X-ray" radiat meas. Vol. 46, pp. 389-395, 2011. https://doi.org/10.1016/j.radmeas.2011.01.025

Cited by

  1. Characteristics of the Maximum Glow Intensity According to the Thermoluminescent Phosphors used in the Absorbed Dose Measurement of the Radiation Therapy vol.8, pp.4, 2014, https://doi.org/10.7742/jksr.2014.8.4.181
  2. 시간 경과에 따른 자기장 노출 유·무 환경에서 열형광선량계의 글로우 곡선 및 피폭 방사선량 분석 vol.16, pp.8, 2013, https://doi.org/10.5392/jkca.2016.16.08.419