DOI QR코드

DOI QR Code

Determination of Eleutherosides and β-Glucan Content from Different Parts and Cultivating Areas of A. senticosus and A. koreanum

가시오가피와 탐라오가피의 산지별 및 부위별 Eleutheroside B, E 및 β-Glucan 함량 분석

  • Kim, Young-Hyun (Dept. of Food Science and Biotechnology, Kangwon National University) ;
  • Bae, Da-Bin (Dept. of Food Science and Biotechnology, Kangwon National University) ;
  • Lee, Jong Seok (Dept. of Food Science and Biotechnology, Kangwon National University) ;
  • Park, Sun-Ok (STR Biotech Co., LTD.) ;
  • Lee, Sang-Jong (STR Biotech Co., LTD.) ;
  • Cho, Ok-Hyun (University of Massachusetts Medical School) ;
  • Lee, Ok-Hwan (Dept. of Food Science and Biotechnology, Kangwon National University)
  • 김영현 (강원대학교 식품생명공학과) ;
  • 배다빈 (강원대학교 식품생명공학과) ;
  • 이종석 (강원대학교 식품생명공학과) ;
  • 박선옥 ((주)에스티알바이오텍) ;
  • 이상종 ((주)에스티알바이오텍) ;
  • 조옥현 (메사추세츠 주립대학교 의과대학) ;
  • 이옥환 (강원대학교 식품생명공학과)
  • Received : 2013.08.16
  • Accepted : 2013.11.06
  • Published : 2013.12.31

Abstract

The present study was performed to quantitatively analyze eleutherosides (B and E) and ${\beta}$-glucan in different plant parts of three cultivars (Chungnam, Gangwon, and Jeju) of Acanthopanax senticosus and Acanthopanax koreanum using HPLC and a commercial enzyme kit. Our results showed high linearity in the calibration curves as the coefficients of correlation ($R^2$) were 0.998 (eleutheroside B) and 0.999 (eleutheroside E), respectively. Eleutheroside B and E were found in stem extracts of A. koreanum cultivated in Jeju (1,122 ${\mu}g/g$, eleutheroside B) and A. senticosus cultivated in Chungnam (2,536 ${\mu}g/g$, eleutheroside E), respectively. However, eleutheroside B was not detected in any part of A. senticosus cultivated in Chungnam. For ${\beta}$-glucan contents, stems of A. senticosus and A. koreanum showed higher than other parts. Furthermore, the ${\beta}$-glucan content in stems of A. koreanum cultivated in Gangwon was significantly higher than in those of other cultivars. These results show that the contents of eleutheroside B, E, and ${\beta}$-glucan were higher in stem extracts of A. senticosus and A. koreanum than other parts. Moreover, our results suggest that the contents of eleutheroside B, E, and ${\beta}$-glucan in A. senticosus and A. koreanum are influenced by cultivation area and the selected part.

오가피의 주요 성분으로 알려져 있는 eleutheroside B와 E 그리고 식물의 세포벽을 구성하는 ${\beta}$-glucan 함량을 강원도(A. senticosus), 충남(A. senticosus), 제주도(A. koreanum) 산지별 오가피의 뿌리, 줄기, 잎, 열매 부위별로 각각 분석한 결과, 충남 오가피는 eleutheroside B가 검출되지 않는 것에 반해 특이적으로 높은 eleutheroside E를 함유하고 있었으며, 제주도 산지 오가피는 뿌리, 줄기, 잎, 열매모든 부위에서 eleutheroside B와 E가 함께 검출되는 것으로 확인되었다. 서로 다른 산지에서 재배되었지만 지역과 품종에 상관없이 줄기 부위에 가장 많은 eleutheroside B와 E가 함유되어 있었으며, ${\beta}$-glucan 또한 강원도(7.46%), 충남(3.41%), 제주도(5.05%) 산지 오가피 모두 줄기 부위에 가장 많았다. 오가피는 같은 품종이더라도 재배지역에 따라 eleutheroside B와 E 그리고 ${\beta}$-glucan 함량에 차이를 보여주었고 산지와 품종에 상관없이 줄기 부위에 가장 많이 함유되어 있었다. 따라서 본 연구결과를 기초로 오가피 소재 제품을 만들기 위해서는 제품의 목적에 따라 산지 및 부위의 선택이 필요할 것으로 사료되며, 산지에 따른 유효성분 차이에 있어서 탐라오가피는 제주도 특산식물로 오가피를 이용한 제품개발 시 지표성분을 표준화하는데 있어서 용이할 것으로 판단된다.

Keywords

References

  1. Moon JH, Yook CS, Jang YP. 2012. Anatomical and microscopic studies on Acanthopanax gracilistylus, A. koreanum and A. sieboldianus. Kor J Pharmacogn 43: 268-273.
  2. Gaffney BT, Hugel HM, Rich PA. 2001. Panax ginseng and Eleutherococcus senticosus may exaggerate an already existing biphasic response to stress via inhibition of enzymes which limit the binding of stress hormones to their receptors. Med Hypotheses 56: 567-572. https://doi.org/10.1054/mehy.2000.1163
  3. Zhang XL, Ren F, Huang W, Ding RT, Zhou QS, Liu XW. 2010. Anti-fatigue activity of extracts of stem bark from Acanthopanax senticosus. Molecules 16: 28-37. https://doi.org/10.3390/molecules16010028
  4. Choi JM, Ahn JB. 2012. Functional properties of 50% methanol extracts from different parts of Acanthopanax sessiliflorus. Korean J Food Sci Technol 44: 373-377. https://doi.org/10.9721/KJFST.2012.44.3.373
  5. Dowling EA, Redondo DR, Branch JD, Jones S, McNabb G, Williams MH. 1996. Effect of eleutherococcus senticosus on submaximal and maximal exercise performance. Med Sci Sports Exerc 28: 482-489. https://doi.org/10.1097/00005768-199604000-00013
  6. Watanabe K, Kamata K, Sato J, Takahashi T. 2010. Fundamental studies on the inhibitory action of Acanthopanax senticosus Harms on glucose absorption. J Ethnopharmacol 132: 193-199. https://doi.org/10.1016/j.jep.2010.08.014
  7. Yoon TJ, Jo SY. 2010. Effect of Acanthopanax senticosus extracts on alcohol degradation and anti-inflammatory activity in mice. Korean J Food & Nutr 23: 542-548.
  8. Brekhman II, Dardymov IV. 1969. New substances of plant origin which increase nonspecific resistance. Annu Rev Pharmacol 9: 419-430. https://doi.org/10.1146/annurev.pa.09.040169.002223
  9. Lyu SY, Park WB. 2010. Modulation of IL-12 and IFN-${\gamma}$ secretions by eleutheroside E, tortoside A, and syringaresinol from Acanthopanax koreanum Nakai. Biomolecules & Therapeutics 18: 211-218. https://doi.org/10.4062/biomolther.2010.18.2.211
  10. Kim IH, Kim SH, Kwon JH. 2008. Optimizing the hot-water extraction conditions for Acanthopanacis cortex using response surface methodology. J Korean Soc Food Sci Nutr 37: 512-520. https://doi.org/10.3746/jkfn.2008.37.4.512
  11. Park KJ, Park SH, Kim JK. 2010. Anti-wrinkle activity of Acanthopanax senticosus extract in ultraviolet B (UVB)-induced photoaging. J Korean Soc Food Sci Nutr 39: 42-46. https://doi.org/10.3746/jkfn.2010.39.1.042
  12. Lee SH, Kang SS, Cho SH, Ryu SN, Lee BJ. 2005. Determination of eleutherosides B and E in various parts of Acanthopanax species. Kor J Pharmacogn 36: 70-74.
  13. Kang JS, Linh PT, Cai XF, Kim HS, Lee JJ, Kim YH. 2001. Quantitative determination of eleutheroside B and E from Acanthopanax species by high performance liquid chromatography. Arch Pharm Res 24: 407-411. https://doi.org/10.1007/BF02975184
  14. Huang L, Zhao H, Huang B, Zheng C, Peng W, Qin L. 2011. Acanthopanax senticosus: review of botany, chemistry and pharmacology. Pharmazie 66: 83-97.
  15. Huang LZ, Wei L, Zhao HF, Huang BK, Rahman K, Qin LP. 2011. The effect of eleutheroside E on behavioral alterations in murine sleep deprivation stress model. Eur J Pharmacol 658: 150-155. https://doi.org/10.1016/j.ejphar.2011.02.036
  16. Lee JS, Lee SH, Jang YM, Lee JD, Lee BH, Jung JY. 2011. Macrophage and anticancer activities of feed additives on ${\beta}$-glucan from Schizophyllum commune in breast cancer cells. J Korean Soc Food Sci Nutr 40: 949-955. https://doi.org/10.3746/jkfn.2011.40.7.949
  17. Burkus Z, Temelli F. 1998. Effect of extraction conditions on yield, composition, and viscosity stability of barley ${\beta}$-glucan gum. Cereal Chem 75: 805-809. https://doi.org/10.1094/CCHEM.1998.75.6.805
  18. Ramberg JE, Nelson ED, Sinnott RA. 2010. Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutr J 9: 54. https://doi.org/10.1186/1475-2891-9-54
  19. Park HJ, Kim YB, Kang TS, Jug IS, Kim KY, Jeong HS. 2005. Immunomodulatory activities of oat bran extracts with different extraction conditions. Korean J Food Sci Technol 37: 103-107.
  20. Ko HJ, Song CK, Cho NK. 2003. Growth of seeding and germination characteristics of Acanthopanax koreanum NAKAI. Korean J Medicinal Crop Sci 11: 46-52.
  21. Ha ES, Hwang SH, Shin KS, Yu KW, Lee KH, Choi JS, Park WM, Yoon TJ. 2003. Competitive ELISA for the measurement of glycoprotein purified form Acanthopanx senticosus. Korean J Food Sci Technol 35: 1209-1215.
  22. Kim YH, Bae DB, Park SO, Lee SJ, Cho OH, Lee OH. 2013. Method validation for the determination of eleutherosides and ${\beta}$-glucan in Acanthopanax koreanum. J Korean Soc Food Sci Nutr 42: 1419-1425. https://doi.org/10.3746/jkfn.2013.42.9.1419
  23. Kim IH, Kim SH, Kwon JH. 2008. Optimizing the hot-water extraction conditions for Acanthopanacis cortex using response surface methodology. J Korean Soc Food Sci Nutr 37: 512-520. https://doi.org/10.3746/jkfn.2008.37.4.512
  24. Chung HJ. 2010. Antioxidative activities of different part extracts of Physalis alkekengi var. francheti (winter cherry). Korean J Food Preserv 17: 867-873.
  25. Kim HM, Kim JS, Lee SH, Lee SJ, Lee GP, Kang SS, Cho SH, Cheoi DS. 2006. Quantitative analysis of lignans in the fruits of Acanthopanax species by HPLC. Food Sci Biotechnol 15: 778-780.
  26. Jeong HS, Kang TS, Jung IS, Park HJ, Min YK. 2003. ${\beta}$- Glucan contents with different particle size and varieties of barley and oats. Korean J Food Sci Technol 35: 610-616.
  27. Bhatty RS. 1992. ${\beta}$-Glucan content and viscosities of barleys and their roller-milled flour and bran products. Cereal Chem 69: 469-471.
  28. Um S, Jin GE, Park KW, Yu YB, Park KM. 2010. Physiological activity and nutritional composition of Pleurotus species. Korean J Food Sci Technol 42: 90-96.

Cited by

  1. Eleutherosides Extraction from Acanthopanax sessiliflorus Seeman and Eleutherococcus senticosus Maxim Using an Enzymatic Process vol.45, pp.9, 2016, https://doi.org/10.3746/jkfn.2016.45.9.1273
  2. Genotoxicity Study from the Extracts of Fermented Acanthopanax koreanum vol.31, pp.2, 2016, https://doi.org/10.13103/JFHS.2016.31.2.107
  3. The Antioxidant Activity and Their Major Antioxidant Compounds from Acanthopanax senticosus and A. koreanum vol.20, pp.7, 2015, https://doi.org/10.3390/molecules200713281
  4. Development and Validation of Analytical Method for Pectolinarin and Pectolinarigenin in Fermented Cirsium setidens Nakai by Bioconversion vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1504
  5. 저장조건에 따른 생물전환 발효고려엉겅퀴 주정추출물의 안정성 조사 vol.30, pp.2, 2013, https://doi.org/10.9799/ksfan.2017.30.2.388
  6. Comparative Analysis of the Nutritional Components and Antioxidant Activities of Different Brassica juncea Cultivars vol.9, pp.6, 2020, https://doi.org/10.3390/foods9060840