DOI QR코드

DOI QR Code

Photocurrent study on the splitting of the valence band and growth of MgGa2Se4 single crystal thin film by hot wall epitaxy

Hot Wall Epitaxy(HWE)법에 의한 MgGa2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구

  • Received : 2013.10.31
  • Accepted : 2013.11.22
  • Published : 2013.12.31

Abstract

A stoichiometric mixture of evaporating materials for $MgGa_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $MgGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $MgGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.34 eV-(8.81{\times}10^{-4}eV/K)T^2/(T+251K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $MgGa_2Se_4$ have been estimated to be 190.6 meV and 118.8 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $MgGa_2Se_4$/GaAs epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-}$, $B_{1^-}$exciton for n = 1 and $C_{27}-exciton$ peaks for n = 27.

수평 전기로에서 $MgGa_2Se_4$ 다결정을 합성하여 HWE(Hot Wall Epitaxy)방법으로 $MgGa_2Se_4$ 단결정 박막을 반절연성 GaAs(100)기판에 성장시켰다. $MgGa_2Se_4$단결정 박막의 성장 조건은 증발원의 온도 $610^{\circ}C$, 기판의 온도 $400^{\circ}C$였고 성장 속도는 $0.5{\mu}m/hr$였다. 이때 이중결정 X-선 요동곡선(DCRC)의 반폭치(FWHM)도 212 arcsec로 가장 작아 최적 성장 조건임을 알 수 있었다. $MgGa_2Se_4$/SI(Semi-Insulated) GaAs(100) 단결정 박막의 광흡수와 광전류 spectra를 293 K에서 10 K까지 측정하였다. 광흡수 스펙트럼으로부터 band gap Eg(T)는 varshni공식에 따라 계산한 결과 $E_g(T)=2.34 eV-(8.81{\times}10^{-4}eV/K)T^2/(T+251K)$이었으며 광전류 스펙트럼으로부터 Hamilton matrix(Hopfield quasicubic mode)법으로 계산한 결과 crystal field splitting energy ${\Delta}cr$값이 190.6 meV이며 spin-orbit energy ${\Delta}so$값은 118.8 meV임을 확인하였다. 10 K일 때 광전류 봉우리들은 n = 1, 27일때 $A_{1^-}$, $B_{1^-}$$C_{27}-exciton$ 봉우리임을 알았다.

Keywords

References

  1. L. Roa, J.C. Chervin, A. Chevy, M. Davila, P. Grima and J. Gonzalez, "Raman scattering in novel $MgGa_2Se_4$ crystals", Phys. Stat. Sol. 198 (1996) 99. https://doi.org/10.1002/pssb.2221980114
  2. H.G. Kim, W.T. Kim and Y.G. Kim, "Structure and optical properties of $MgGa_2Se_4$ and $MgGa_2Se_4$ : $Co^{2+}$ single crystal", Physical Review B 38(14) (1988) 9469. https://doi.org/10.1103/PhysRevB.38.9469
  3. V.A. Savchuk, B.V. Korzoun and D.I. Zhigunov, "Band diagram of the polycrystalline CdS/$MgGa_2Se_4$ heterojunction", J. Crys. Growth 158 (1996) 385. https://doi.org/10.1016/0022-0248(95)00439-4
  4. Ravhi S. Kumar, A. Sekar, N. Victor Jaya, S. Natarajan and S. Chichibu, "Photoacoustic spectra of $MgGa_2Se_4$", J. of Allys and Comp. 312(4) (2000) 498.
  5. V.A. Savchuk, G.K. Savchuk and B.V. Korzun, "Electronic properties of $MgGa_2Se_4$-based heterojunction Solar cells. Part I. Transport analysis", Inor. Mate. 34 (1997) 664.
  6. Nobuyuki Yamamoto, "Electronic properties of $CuGaSe_2$- based heterojunction Solar cells. Part II. Defect spectroscopy", Jpns. J. of Applied Phy. 15 (1976) 786.
  7. H.L. Park, W.T. Kim, H.G. Kim, C.D. Kim and H.N. Kim, "Optical absorption of $MgGa_2Se_4$ : $Ni^{2+}$ single crystal", Solid State Communications 72(9) (1989) 905. https://doi.org/10.1016/0038-1098(89)90424-9
  8. H.G. Kim and W.T. Kim, "Ptotoluminescience in undoped and co-doped $MgGa_2Se_4$ : $Ni^{2+}$ single crystal", J. Korean Phys. Soc. 26(4) (1993) 429.
  9. A.M. Andriesh, N.N. Syrbu, M.S. Iovu and V.E. Tazlavan, "Electronically active defects in $MgGa_2Se_4$-based heterojunction solar cells", Phys. Stat. Sol. 187 (1995) 83. https://doi.org/10.1002/pssb.2221870107
  10. B.D. Cullity, Elements of X-ray Diffractions, Caddson-Wesley, Chap. 11 (1985).
  11. S.H. You, K.J. Hong, T.S. Jeong and C.J. Youn, "Structure, electric, and optical properties of $MgGa_2Se_4$ epilayers grown by hot wall epitaxy method", J. Crystal Growth 361 (2012) 142. https://doi.org/10.1016/j.jcrysgro.2012.09.030
  12. Y.P. Varshni, "Tetragonal distortion for $A^I{\cdot}B^{II}{\cdot}C_2^{III}$ Chalcopyrite compounds", Physica 34 (1967) 412.
  13. J.J. Hopfield, "Energy bands of $CuGaSe_2$ in the chalcopyrite", J. Phys. Chem. Sloids. 10 (1959) 109.
  14. J.L. Shay and J.H. Wernick, "Ternary chalcopyrite semiconductor : Growth, electronic properties and applications", Pergamon Press Chap. 3-4 (1975).