DOI QR코드

DOI QR Code

Synthesis of high purity carbon powders using inductively thermal plasma

유도 열플라즈마 공정을 이용한 고순도 카본분말 합성

  • Kim, Kyung-In (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Kyu-Sung (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Taek (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
  • 김경인 (한국세라믹기술원 이천분원) ;
  • 한규성 (한국세라믹기술원 이천분원) ;
  • 황광택 (한국세라믹기술원 이천분원) ;
  • 김진호 (한국세라믹기술원 이천분원)
  • Received : 2013.10.07
  • Accepted : 2013.11.08
  • Published : 2013.12.31

Abstract

Silicon carbide (SiC) has recently drawn an enormous industrial interest because of its useful mechanical properties such as thermal resistance, abrasion resistance and thermal conductivity at high temperature. Especially, high purity SiC is applicable to the fields of power semiconductor and lighting emitting diode (LED). In this work, high purity carbon powders as raw material for high purity SiC were prepared by a RF induction thermal plasma. Dodecane ($C_{12}H_{26}$) as hydrocarbon liquid precursor has been utilized for synthesis of high purity carbon powders. It is found that the filtercollected carbon powders showed smaller particle size (10~20 nm) and low crystallinity compared to the reactor-collected carbon powders. The purities of reactor-collected and filter-collected carbon powders were 99.9997 % (5N7) and 99.9993 % (5N3), respectively. In addition, the impurities of carbon powders synthesized by RF induction thermal plasma were mainly originated from the surrounding environment.

실리콘카바이드(SiC)는 높은융점과 내마모성 및 열전도 특성으로 산업적으로 널리 활용되고 있다. 특히 고순도 SiC는 고효율 전력 변환용 SiC 반도체 및 LED 공정에 적용되는 미래소재로 각광받고 있다. 본 연구에서는 고순도 SiC를 합성하기 위한 원료인 고순도 카본(C)을 유도 열플라즈마(RF Inductively thermal plasma)를 이용하여 합성하였으며, 출발원료로서 탄화수소계 액상물질인 도데칸이 사용되었다. 유도 열플라즈마 합성된 고순도 카본은 반응관과 필터에서 포집되며, 필터에서 포집된 카본 분말은 반응관에서 포집된 카본 분말보다 작은 입도(10~20 nm)와 낮은 결정성을 갖는 것으로 확인하였다. 반응관과 필터부에서 포집된 카본 분말의 순도는 각각 99.9997 %(5N7)와 99.9993 %(5N3)로 측정되었으며, 카본 분말에서 검출되는 불순물은 열플라즈마 합성장비에서 기인한 것으로 확인되었다.

Keywords

References

  1. M. Pierre, "Silicon carbide and silicon carbide-based structures: the physics of epitaxy", Surf. Sci. Rep. 48 (2002) 1. https://doi.org/10.1016/S0167-5729(02)00099-7
  2. B.G. Ravi, O.A. Omotoye, T.S. Srivatsan, M. Petrorali and T.S. Sudarshan, "The microstructure and hardness of silicon carbode synthesized by plasma pressure compaction", J. Alloys Compd. 299 (2009) 292.
  3. J.P. Ahn, J.H. Chae, K.H. Kim, J.S. Park, D.G. Kim and H.S. Kim, "Effect of carbon and boron addition on sintering behavior and mechanical properties of hot-pressed SiC" J. Korean Cryst. Growth Cryst. Technol. 18 (2008) 15.
  4. S.M. Ko, S.M. Koo, W.S. Cho, K.T. Hwang and J.H. Kim, "Synthesis of SiC nano-powder from organic precursors using RF inductively coupled thermal plasma", Ceram. Int. 38 (2012) 1959. https://doi.org/10.1016/j.ceramint.2011.10.028
  5. L. Wang, Y. Peng, X. Hu and X. Xu, "Combustion synthesis of high purity SiC powder by radio-frequency heating", Ceram. Int. 39 (2013) 6867. https://doi.org/10.1016/j.ceramint.2013.02.021
  6. World Premier Material program-Research committee 8 division, "Ultra-high purity SiC" (2010).
  7. Y. Lin and C. Chuang, "The effects of transition metals on carbothermal synthesis of $\beta$-SiC powder", Ceram. Int. 33 (2007) 779. https://doi.org/10.1016/j.ceramint.2006.01.010
  8. B.M. Moshtaghioun, R. Poyato, F.L. Cumbrera, S. de Bernardi-Martin, A. Monshi, M.H. Abbasi, F. Karimzadeh and A. Dominguez-Rodriguez, "Rapid carbothermic synthesis of silicon carbide nano powders by using microwave heating", J. Eur. Ceram. Soc. 32 (2012) 1787. https://doi.org/10.1016/j.jeurceramsoc.2011.12.021
  9. H. Martin, R. Ecke and E. Muller, "Synthesis of nanocrystallne silicon carbide powder by carbothermal reduction", J. Eur. Ceram. Soc. 18 (1998) 1737. https://doi.org/10.1016/S0955-2219(98)00094-6
  10. Z. Li, W. Zhou, T. Lei, F. Luo, Y. Huang and Q. Cao, "Microwave dielectric properties of SiC(B) solid solution powder prepared by sol-gel", J. Alloys Compd. 475 (2009) 506. https://doi.org/10.1016/j.jallcom.2008.07.070
  11. J. Li, J. Tian and L. Dong, "Synthesis of SiC precursors by a two-step sol-gel process and their conversion to SiC powders", J. Eur. Ceram. Soc. 77 (2000) 1853.
  12. A. Najafi, F. Golestani Fard, H.R. Rezaie and N. Ehsani, "Synthesis and characterization of SiC nano powder with low residual carbon processed by sol-gel method", Powder Technol. 219 (2012) 202. https://doi.org/10.1016/j.powtec.2011.12.045
  13. M.L. Richard and B. Florence, "Preceramic polymer routes to silicon carbide", Chem. Mater. 5 (1993) 260. https://doi.org/10.1021/cm00027a007
  14. S. Matthews, M.J. Edirisinghef and M.J. Folkes, "Effect of pre-pyrolysis heat treatment on the preparation of silicon carbide from a polycarbosilane precursor", Ceram. Int. 25 (1999) 49. https://doi.org/10.1016/S0272-8842(97)00088-6
  15. V.G. Pol, S.V. Pol and A. Gedanken, "Novel synthesis of high surface area silicon carbide by RAPET (Reactions under autogenic pressure at elevated temperature) of organosilanes", Chem. Mater. 17 (2005) 1797. https://doi.org/10.1021/cm048032z