DOI QR코드

DOI QR Code

Fabrication and densification of magnetic α-Fe/Al2O3 nanocomposite by mechanical alloying

기계적합금화에 의한 α-Fe/Al2O3 자성 나노복합재료의 제조 및 치밀화

  • Lee, Chung-Hyo (Dept. of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Kim, Han-Woong (Dept. of Advanced Materials Science and Engineering, Mokpo National University)
  • 이충효 (목포대학교 신소재공학과) ;
  • 김한웅 (목포대학교 신소재공학과)
  • Received : 2013.10.10
  • Accepted : 2013.11.15
  • Published : 2013.12.31

Abstract

Fabrication of nanocomposite material for the $Fe_2O_3-Al$ system by mechanical alloying (MA) has been investigated at room temperature. It is found that ${\alpha}-Fe/Al_2O_3$ nanocomposite powders in which $Al_2O_3$ is dispersed in ${\alpha}-Fe$ matrix are obtained by mechanical alloying of $Fe_2O_3$ with Al for 5 hours. The change in magnetization and coercivity also reflects the details of the solid state reduction process of hematite by pure metal of Al during mechanical alloying. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine using graphite dies at $1000^{\circ}C$ and $1100^{\circ}C$ under 60 MPa. Shrinkage change after SPS of MA'ed sample for 5 hrs was significant above $700^{\circ}C$ and gradually increased with increasing temperature up to $1100^{\circ}C$. X-ray diffraction result shows that the average grain size of ${\alpha}-Fe$ in ${\alpha}-Fe/Al_2O_3$ nanocomposite sintered at $1100^{\circ}C$ is in the range of 180 nm. It can be also seen that the coercivity (Hc) of SPS sample sintered at $1000^{\circ}C$ is still high value of 88 Oe, suggesting that the grain growth of magnetic ${\alpha}-Fe$ phase during SPS process tend to be suppressed.

본 연구에서는 $Fe_2O_3-Al$계 나노복합재료를 제조하기 위하여 실온 기계적 합금화법(MA)을 적용하였다. $Fe_2O_3$와 순금속 Al의 혼합분말을 5시간 동안 MA 처리한 결과 ${\alpha}-Fe$ 기지에 $Al_2O_3$가 미세하게 분산된 ${\alpha}-Fe/Al_2O_3$ 나노복합분말을 얻을 수 있었다. 또한 MA 분말의 자화값 및 보자력 측정을 통하여 볼밀처리 중 순금속 Al에 의한 헤마타이트의 고상환원 과정을 자세히 관찰할 수 있었다. MA 분말시료의 벌크화를 위하여 소결온도 $1000^{\circ}C$$1100^{\circ}C$, 압력 60 MPa 에서 SPS 소결을 실시하였다. SPS 과정에서 MA 5시간 시료의 수축은 소결 개시 후 $700^{\circ}C$ 이상에서 크며 소결온도 $1100^{\circ}C$까지 비교적 단조롭게 수축함을 알 수 있었다. X선 회절 결과로부터, MA 분말을 $1100^{\circ}C$에서 SPS 소결시킨 ${\alpha}-Fe/Al_2O_3$ 나노복합재료의 경우 ${\alpha}-Fe$상 평균 결정립 크기가 180 nm임을 알 수 있었다. 또한 MA 분말을 $1000^{\circ}C$에서 SPS 소결시킨 시료의 보자력이 88 Oe로 여전히 높은 값을 보이는 사실로부터 소결과정 중 자성상 ${\alpha}-Fe$의 결정립 성장이 크게 억제된 것으로 판단된다.

Keywords

References

  1. R. Schwarz and C.C. Koch, "Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics", Appl. Phys. Lett. 49 (1986) 146. https://doi.org/10.1063/1.97206
  2. C.C. Koch, O.B. Cavin, C.G. Mckamey and J.O. Scarbrough, "Preparation of amorphous $Ni_{60}Nb_{40}$ by mechanical alloying", Appl. Phys. Lett. 43 (1983) 1017. https://doi.org/10.1063/1.94213
  3. H.J. Fecht, E. Hellstern, Z. Fu and W.L. Johnson, "Nanocrystalline metals prepared by high-energy ball milling", Metal. Trans. 21 (1990) 2333. https://doi.org/10.1007/BF02646980
  4. J. Eckert and L. Schultz, "Glass formation and extended solubilities in mechanically alloyed cobalt-transition metal alloys", J. Less-Common Metals 166 (1990) 293. https://doi.org/10.1016/0022-5088(90)90011-8
  5. Y. Isoda, Y. Imai and Y. Shinohara, "The effect of crystal grain size on thermoelectric properties of sintered $\beta$- $FeSi_2$", J. Jpn. Inst. Metals 67 (2003) 410. https://doi.org/10.2320/jinstmet1952.67.8_410
  6. M. Zakeri, R. Yazdani-Rad, M.H. Enayati and M.R. Rahimipour, "Synthesis of nanocrystalline $MoSi_2$ by mechanical alloying", J. Alloy and Compounds 403 (2005) 258. https://doi.org/10.1016/j.jallcom.2005.06.003
  7. L.F. Mattheiss, "Calculated structural properties of $CrSi_2,\;MoSi_2,\;and\;WSi_2$", Phys. Rev. B: Condens. Matter 45 (1992) 3252. https://doi.org/10.1103/PhysRevB.45.3252
  8. I.K. Kim, "Synthesis of thermoelectric $Mg_3Sb_2$ by melting and mechanical alloying", J. Korean Cryst. Growth Cryst. Technol. 22 (2012) 207. https://doi.org/10.6111/JKCGCT.2012.22.4.207
  9. C.H. Lee, "Fabrication and characterization of Mn-Si thermoelectric materials by mechanical alloying", J. Korean Cryst. Growth Cryst. Technol. 21 (2011) 246. https://doi.org/10.6111/JKCGCT.2011.21.6.246
  10. T. Fukunaga, N. Kuroda, C.H. Lee, T. Koyano and U. Mizutani, "Nitrogen induced amorphization observed by X-ray and neutron diffractions in the immiscible V-Cu system", J. Non-Cryst. Solids 176 (1994) 98. https://doi.org/10.1016/0022-3093(94)90217-8
  11. H.J. Fecht, E. Hellstern, Z. Fu and W.L. Johnson, "Nanocrystalline metals prepared by high-energy ball milling", Metal. Trans. 21 (1990) 2333. https://doi.org/10.1007/BF02646980
  12. T. Ban, K. Okada, T. Hayashi and N. Otsuka, "Mechanochemical effects for some $Al_2O_3$ powders of dry grinding", J. Mat. Sci. 27 (1992) 465.
  13. K. Tokumitsu, "Mechanochemical reaction between metals and hydrocarbons", Mat. Sci. Forum 88-90 (1992) 715. https://doi.org/10.4028/www.scientific.net/MSF.88-90.715
  14. H. Izumi, K. Izumi and K. Kudaka, "Mechanochemical reduction reaction of titanium oxides by calcium", J. Jpn. Soc. Powder and Powder Metallurgy 48 (2001) 1051. https://doi.org/10.2497/jjspm.48.1051
  15. C.H. Lee, S.H. Lee, S.Y. Chun, S.J. Lee and Y.S. Kwon, "Nanocomposite formation in the $Fe_2O_3$-M (M = Al, Ti,Zn,Cu) system by mechanical alloying", Mat. Sci. Forum 449-452 (2004) 253. https://doi.org/10.4028/www.scientific.net/MSF.449-452.253
  16. F.R. de Boer, R. Boom, W.C.M. Matten, A.R. Miedema and A.K. Niessen, "Cohesion in metals" (North-Holland, Amsterdam, 1988).
  17. W.H. Hall, "Characterization of crystal size and strain by X-ray diffraction", J. Inst. Met. 75 (1948) 1127.
  18. K. Schnitzke, L. Schultz, J. Wecker and M. Katter, "High coercivity in $Sm_2Fe_{17}N_x $ magnets", Appl. Phys. Lett. 57 (1990) 2853. https://doi.org/10.1063/1.104202