Korean J. Math. **21** (2013), No. 4, pp. 365–374 http://dx.doi.org/10.11568/kjm.2013.21.4.365

REMARK ON AVERAGE OF CLASS NUMBERS OF FUNCTION FIELDS

HWANYUP JUNG

ABSTRACT. Let $k = \mathbb{F}_q(T)$ be a rational function field over the finite field \mathbb{F}_q , where q is a power of an odd prime number, and $\mathbb{A} = \mathbb{F}_q[T]$. Let γ be a generator of \mathbb{F}_q^* . Let \mathcal{H}_n be the subset of \mathbb{A} consisting of monic square-free polynomials of degree n. In this paper we obtain an asymptotic formula for the mean value of $L(1, \chi_{\gamma D})$ and calculate the average value of the ideal class number $h_{\gamma D}$ when the average is taken over $D \in \mathcal{H}_{2g+2}$.

1. Introduction and statement of result

Let $k = \mathbb{F}_q(T)$ be a rational function field over the finite field \mathbb{F}_q , where q is a power of an odd prime number, and $\mathbb{A} = \mathbb{F}_q[T]$. Let \mathbb{A}^+ be the set of monic polynomials in \mathbb{A} and \mathcal{H} be the subset of \mathbb{A}^+ consisting of monic square-free polynomials. Write $\mathbb{A}_n^+ = \{N \in \mathbb{A}^+ : \deg N = n\}$ and $\mathcal{H}_n = \mathcal{H} \cap \mathbb{A}_n^+$. For any nonconstant square free $D \in \mathbb{A}^+$, let \mathcal{O}_D be the integral closure of \mathbb{A} in $k(\sqrt{D})$ and h_D be the ideal class number of \mathcal{O}_D . Hoffstein and Rosen [3] calculated the average value of the ideal class number h_D when the average is taken over all monic polynomials

Received July 3, 2013. Revised September 13, 2013. Accepted September 13, 2013.

²⁰¹⁰ Mathematics Subject Classification: 11R58, 11R18, 11R29.

Key words and phrases: Mean Values of L-functions, finite fields, function fields, class numbers.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2010-0008139).

[©] The Kangwon-Kyungki Mathematical Society, 2013.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

D of a fixed odd degree. And rade [1] obtained an asymptotic formula for the mean value of $L(1, \chi_D)$ and calculated the average value of the ideal class number h_D when the average is taken over $D \in \mathcal{H}_{2q+1}$. We remark that Andrade assumed that $q \equiv 1 \mod 4$ for simplicity, but his results hold true for any odd q > 3. In a recent paper, the author [4] obtained an asymptotic formula for the mean value of $L(1, \chi_D)$ and calculated the average value of the ideal class number h_D when the average is taken over $D \in \mathcal{H}_{2g+2}$. Note that if $D \in \mathcal{H}_{2g+1}$, the infinite place $\infty_k = (1/T)$ of k ramifies in $k(\sqrt{D})$, i.e., $k(\sqrt{D})/k$ is a (ramified) imaginary quadratic extension, and if $D \in \mathcal{H}_{2q+2}$, ∞_k splits in $k(\sqrt{D})$, i.e., $k(\sqrt{D})/k$ is a real quadratic extension. Let γ be a fixed generator of \mathbb{F}_q^* . Any inert imaginary quadratic extension K of k (i.e., ∞_k is inert in K) can be written uniquely in the form $K = k(\sqrt{\gamma D})$ for some $D \in \mathcal{H}_{2q+2}$. The aim of this paper is to study the asymptotic formula for the mean value of $L(1, \chi_{\gamma D})$ and calculate the average value of the ideal class number $h_{\gamma D}$ when the average is taken over $D \in \mathcal{H}_{2g+2}$. We state our main results.

THEOREM 1.1. We have

$$\sum_{D \in \mathcal{H}_{2g+2}} L(1, \chi_{\gamma D}) = |D| \mathbf{P}(2) + O(2^g q^g),$$

where $|D| = q^{2g+2}$ and

$$\mathbf{P}(s) = \prod_{\substack{P \in \mathbb{A}^+ \\ \text{irreducible}}} \left(1 - \frac{1}{(1+|P|)|P|^s} \right).$$

Since $\sharp \mathcal{H}_{2g+2} = (q-1)q^{2g+1}$ (see (2.1)), as a corollary of the Theorem 1.1, we have the following.

COROLLARY 1.2. We have

$$\frac{1}{\sharp \mathcal{H}_{2g+2}} \sum_{D \in \mathcal{H}_{2g+2}} L(1, \chi_{\gamma D}) \sim |D| \mathcal{P}(2)$$

as $g \to \infty$.

For any $D \in \mathcal{H}_{2g+2}$, we have the following class number formula (see [3, Theorem 0.6]):

(1.1)
$$L(1,\chi_{\gamma D}) = \frac{q+1}{2\sqrt{|D|}}h_{\gamma D} = \frac{q\zeta_{\mathbb{A}}(2)}{2\zeta_{\mathbb{A}}(3)\sqrt{|D|}}h_{\gamma D}.$$

By Corollary 1.2 and the class number formula (1.1), we have the following asymptotic formula for the average of the class number $h_{\gamma D}$.

THEOREM 1.3. We have

$$\frac{1}{\sharp \mathcal{H}_{2g+2}} \sum_{D \in \mathcal{H}_{2g+2}} h_{\gamma D} \sim \frac{2\zeta_{\mathbb{A}}(3)\mathbf{P}(2)}{q\zeta_{\mathbb{A}}(2)} |D| \sqrt{|D|}$$

as $g \to \infty$.

2. Preliminaries

2.1. Quadratic Dirichlet *L*-function. Let \mathbb{A}^+ be the set of all monic polynomials in \mathbb{A} and $\mathbb{A}_n^+ = \{N \in \mathbb{A}^+ : \deg N = n\}$ $(n \ge 0)$. The zeta function $\zeta_{\mathbb{A}}(s)$ of \mathbb{A} is defined by the infinite series

$$\zeta_{\mathbb{A}}(s) = \sum_{N \in \mathbb{A}^+} |N|^{-s}.$$

It is straightforward to see that $\zeta_{\mathbb{A}}(s) = \frac{1}{1-q^{1-s}}$. For any square-free $D \in \mathbb{A}$, the quadratic character χ_D is defined by the Jacobi symbol $\chi_D(N) = (\frac{D}{N})$ and the quadratic Dirichlet *L*-function $L(s, \chi_D)$ associated to χ_D is

$$L(s,\chi_D) = \sum_{N \in \mathbb{A}^+} \chi_D(N) |N|^{-s}.$$

We can write $L(s, \chi_D) = \sum_{n=0}^{\infty} \sigma_n(D)q^{-ns}$ with $\sigma_n(D) = \sum_{N \in \mathbb{A}_n^+} \chi_D(N)$. Since $\sigma_n(D) = 0$ for $n \ge \deg D$, $L(s, \chi_D)$ is a polynomial in q^{-s} of degree $\le \deg D - 1$. Putting $u = q^{-s}$, write

$$\mathcal{L}(u,\chi_D) = \sum_{n=0}^{\deg D-1} \sigma_n(D) u^n = L(s,\chi_D).$$

The cardinality of \mathcal{H}_n is $\#\mathcal{H}_1 = q$ and $\#\mathcal{H}_n = (1 - q^{-1})q^d$ $(n \ge 2)$. In particular, we have

(2.1)
$$\#\mathcal{H}_{2g+2} = (q-1)q^{2g+1} = \frac{q^{2g+2}}{\zeta_{\mathbb{A}}(2)}.$$

Fix a generator γ of \mathbb{F}_q^* . Write $\overline{D} = \gamma D$ for any $D \in H_{2g+2}$. Since $(\frac{\gamma}{N}) = (-1)^{\deg N}$, we have $(\frac{\overline{D}}{N}) = (-1)^{\deg N} (\frac{D}{N})$. Hence, $\sigma_n(\overline{D}) = (-1)^n \sigma_n(D)$.

For $D \in \mathcal{H}_{2g+2}$, $\mathcal{L}(u, \chi_{\bar{D}})$ has a trivial zero at u = -1. The complete *L*-function $\tilde{\mathcal{L}}(u, \chi_{\bar{D}})$ is defined by

$$\tilde{\mathcal{L}}(u,\chi_{\bar{D}}) = (1+u)^{-1} \mathcal{L}(u,\chi_{\bar{D}}).$$

It is a polynomial of even degree 2g and satisfies the functional equation

(2.2)
$$\tilde{\mathcal{L}}(u,\chi_{\bar{D}}) = (qu^2)^g \tilde{\mathcal{L}}((qu)^{-1},\chi_{\bar{D}}).$$

LEMMA 2.1. Let $\chi_{\bar{D}}$ be a quadratic character, where $D \in \mathcal{H}_{2g+2}$. Then

$$\mathcal{L}(q^{-1},\chi_{\bar{D}}) = \sum_{n=0}^{g} (-1)^n q^{-n} \sum_{N \in \mathbb{A}_n^+} \chi_D(N) + (-1)^g q^{-(g+1)} \sum_{n=0}^{g} \sum_{N \in \mathbb{A}_n^+} \chi_D(N) + (1+q^{-1})q^{-g} \sum_{n=0}^{g-1} \left(\frac{(-1)^n + (-1)^{g+1}}{2}\right) \sum_{N \in \mathbb{A}_n^+} \chi_D(N).$$

Proof. Write $\tilde{\mathcal{L}}(u, \chi_{\bar{D}}) = \sum_{n=0}^{2g} \tilde{\sigma}_n(\bar{D}) u^n$. Since $\mathcal{L}(u, \chi_{\bar{D}}) = (1 + u) \tilde{\mathcal{L}}(u, \chi_{\bar{D}})$, we have $\sigma_0(\bar{D}) = \tilde{\sigma}_0(\bar{D})$, $\sigma_n(\bar{D}) = \tilde{\sigma}_{n-1}(\bar{D}) + \tilde{\sigma}_n(\bar{D})$ $(1 \le n \le 2g)$ and $\sigma_{2g+1}(\bar{D}) = \tilde{\sigma}_{2g}(\bar{D})$, or

(2.3)
$$\tilde{\sigma}_n(\bar{D}) = \sum_{i=0}^n (-1)^{n-i} \sigma_i(\bar{D}) \ (0 \le n \le 2g).$$

By substituting $\tilde{\mathcal{L}}(u, \chi_{\bar{D}}) = \sum_{n=0}^{2g} \tilde{\sigma}_n(\bar{D}) u^n$ into (2.2) and equating coefficients, we have $\tilde{\sigma}_n(\bar{D}) = \tilde{\sigma}_{2g-n}(\bar{D})q^{-g+n}$ or $\tilde{\sigma}_{2g-n}(\bar{D}) = \tilde{\sigma}_n(\bar{D})q^{g-n}$. Hence,

$$\tilde{\mathcal{L}}(u,\chi_{\bar{D}}) = \sum_{n=0}^{g} \tilde{\sigma}_{n}(\bar{D})u^{n} + q^{g}u^{2g}\sum_{n=0}^{g-1} \tilde{\sigma}_{n}(\bar{D})q^{-n}u^{-n}.$$

In particular, we have

(2.4)
$$\tilde{\mathcal{L}}(q^{-1}, \chi_{\bar{D}}) = \sum_{n=0}^{g} \tilde{\sigma}_{n}(\bar{D})q^{-n} + q^{-g} \sum_{n=0}^{g-1} \tilde{\sigma}_{n}(\bar{D}).$$

Remark on average of class numbers of function fields

By substituting (2.3) into (2.4) and using $\sigma_n(\bar{D}) = (-1)^n \sigma_n(D)$, we have

$$\begin{split} \tilde{\mathcal{L}}(q^{-1},\chi_{\bar{D}}) &= \frac{1}{1+q^{-1}} \sum_{n=0}^{g} (-1)^n q^{-n} \sigma_n(D) + \frac{(-1)^g q^{-(g+1)}}{1+q^{-1}} \sum_{n=0}^{g} \sigma_n(D) \\ &+ q^{-g} \sum_{n=0}^{g-1} \left(\frac{(-1)^n + (-1)^{g+1}}{2} \right) \sigma_n(D). \end{split}$$

So we get the result since $\mathcal{L}(q^{-1}, \chi_{\bar{D}}) = (1 + q^{-1})\tilde{\mathcal{L}}(q^{-1}, \chi_{\bar{D}}).$

2.2. Contribution of square parts. The square part contributions in the summation of $L(1, \chi_{\bar{D}})$ over $D \in \mathcal{H}_{2g+2}$ are given as follow.

PROPOSITION 2.2. We have

(2.5)
$$\sum_{m=0}^{\left[\frac{g}{2}\right]} q^{-2m} \sum_{\substack{L \in \mathbb{A}_m^+ \\ (L,D)=1}} \sum_{\substack{D \in \mathcal{H}_{2g+2} \\ (L,D)=1}} 1 = |D| \mathcal{P}(2) - q^{-\left(\left[\frac{g}{2}\right]+1\right)} |D| \mathcal{P}(1) + O\left(q^g\right),$$

(2.6)

$$(-1)^{g} q^{-(g+1)} \sum_{m=0}^{\left[\frac{g}{2}\right]} \sum_{\substack{L \in \mathbb{A}^{+}_{m}}} \sum_{\substack{D \in \mathcal{H}_{2g+2} \\ (L,D)=1}} 1 = (-1)^{g} q^{-(g+1) + \left[\frac{g}{2}\right]} |D| \mathsf{P}(1) + O\left(gq^{g}\right)$$

and

$$(2.7) \quad (1+q^{-1})q^{-g} \left(\frac{1+(-1)^{g+1}}{2}\right) \sum_{m=0}^{\left[\frac{g-1}{2}\right]} \sum_{L \in \mathbb{A}_m^+} \sum_{\substack{D \in \mathcal{H}_{2g+2} \\ (L,D)=1}} 1$$
$$= (q+1)q^{-g+\left[\frac{g-1}{2}\right]-1} \left(\frac{1+(-1)^{g+1}}{2}\right) |D| P(1) + O\left(gq^g\right).$$

Proof. The proofs are mild modifications of those of Proposition 3.7 in [4]. We only give the proof of (2.7). By using the fact that (see [2, Proposition 5.2]))

$$\sum_{\substack{D \in \mathcal{H}_{2g+2} \\ (D,L)=1}} 1 = \frac{|D|}{\zeta_{\mathbb{A}}(2)} \prod_{P|L} (1+|P|^{-1})^{-1} + O\left(\sqrt{|D|} \frac{\Phi(L)}{|L|}\right),$$

we have

$$\begin{split} (1+q^{-1})q^{-g}\left(\frac{1+(-1)^{g+1}}{2}\right) &\sum_{m=0}^{\left[\frac{g-1}{2}\right]} \sum_{L\in\mathbb{A}_m^+} \sum_{\substack{D\in\mathcal{H}_{2g+2}\\(L,D)=1}} 1\\ &= (1+q^{-1})q^{-g}\left(\frac{1+(-1)^{g+1}}{2}\right) \frac{|D|}{\zeta_{\mathbb{A}}(2)} \sum_{m=0}^{\left[\frac{g-1}{2}\right]} \sum_{L\in\mathbb{A}_m^+} \prod_{P\mid L} (1+|P|^{-1})^{-1}\\ &+ O\left(q^{-g} \sum_{m=0}^{\left[\frac{g-1}{2}\right]} \sum_{L\in\mathbb{A}_m^+} \sqrt{|D|} \frac{\Phi(L)}{|L|}\right), \end{split}$$

where $\Phi(L)$ is the Euler totient function. Using the fact that $\sum_{L \in \mathbb{A}_m^+} \Phi(L) = (1 - q^{-1})q^{2m}$ (see [5, Proposition 2.7]), we have

$$q^{-g} \sum_{m=0}^{\left[\frac{g-1}{2}\right]} \sum_{L \in \mathbb{A}_m^+} \sqrt{|D|} \frac{\Phi(L)}{|L|} = q \sum_{m=0}^{\left[\frac{g-1}{2}\right]} q^{-m} \sum_{L \in \mathbb{A}_m^+} \Phi(L)$$
$$= (q-1) \sum_{m=0}^{\left[\frac{g-1}{2}\right]} q^m \ll q^{\frac{g+1}{2}}.$$

By using the fact that ($\left[2,\, \text{Lemma 5.7}\right]\right)$

$$\sum_{L \in \mathbb{A}_m^+} \prod_{P|L} (1+|P|^{-1})^{-1} = q^m \sum_{\substack{M \in \mathbb{A}^+ \\ \deg M \le m}} \frac{\mu(M)}{|M|} \prod_{P|M} \frac{1}{1+|P|},$$

we have

$$(2.8)$$

$$(1+q^{-1})q^{-g}\left(\frac{1+(-1)^{g+1}}{2}\right)\frac{|D|}{\zeta_{\mathbb{A}}(2)}\sum_{m=0}^{\left[\frac{g-1}{2}\right]}\sum_{L\in\mathbb{A}_{m}^{+}}\prod_{P\mid L}(1+|P|^{-1})^{-1}$$

$$=(1+q^{-1})q^{-g}\left(\frac{1+(-1)^{g+1}}{2}\right)\frac{|D|}{\zeta_{\mathbb{A}}(2)}\sum_{m=0}^{\left[\frac{g-1}{2}\right]}q^{m}$$

$$\sum_{\substack{M\in\mathbb{A}^{+}\\\deg M\leq m}}\frac{\mu(M)}{|M|}\prod_{P\mid M}\frac{1}{1+|P|}$$

$$=(q+1)q^{-g+\left[\frac{g-1}{2}\right]-1}\left(\frac{1+(-1)^{g+1}}{2}\right)|D|\sum_{\substack{M\in\mathbb{A}^{+}\\\deg M\leq\left[\frac{g-1}{2}\right]}}\frac{\mu(M)}{|M|}\prod_{P\mid M}\frac{1}{1+|P|}$$

$$-(q+1)q^{-(g+2)}\left(\frac{1+(-1)^{g+1}}{2}\right)|D|\sum_{\substack{M\in\mathbb{A}^{+}\\\deg M\leq\left[\frac{g-1}{2}\right]}}\mu(M)\prod_{P\mid M}\frac{1}{1+|P|}.$$

Finally, by using ([4, Lemma 3.3, Lemma 3.5])

$$\sum_{\substack{M \in \mathbb{A}^+ \\ \deg M \le [\frac{g-1}{2}]}} \frac{\mu(M)}{|M|} \prod_{P|M} \frac{1}{1+|P|} = \mathcal{P}(1) + O\left(q^{-\frac{g-1}{2}}\right)$$

and

$$\sum_{\substack{M \in \mathbb{A}^+ \\ \deg M \le [\frac{g-1}{2}]}} \mu(M) \prod_{P|M} \frac{1}{1+|P|} \le \frac{g+1}{2},$$

we have

$$(1+q^{-1})q^{-g}\left(\frac{1+(-1)^{g+1}}{2}\right)\frac{|D|}{\zeta_{\mathbb{A}}(2)}\sum_{m=0}^{\left[\frac{g-1}{2}\right]}\sum_{L\in\mathbb{A}_{m}^{+}}\prod_{P|L}(1+|P|^{-1})^{-1}$$
$$=(q+1)q^{-g+\left[\frac{g-1}{2}\right]-1}\left(\frac{1+(-1)^{g+1}}{2}\right)|D|P(1)+O\left(gq^{g}\right).$$

371

2.3. Contribution of non square parts. The non square part contributions in the summation of $L(1, \chi_{\overline{D}})$ over $D \in \mathcal{H}_{2g+2}$ are given as follow.

PROPOSITION 2.3. We have

(2.9)
$$\sum_{D \in \mathcal{H}_{2g+2}} \sum_{n=0}^{g} (-1)^n q^{-n} \sum_{\substack{N \in \mathbb{A}_n^+ \\ N \neq \Box}} \chi_D(N) = O\left(2^g q^g\right),$$

(2.10)
$$(-1)^g q^{-(g+1)} \sum_{D \in \mathcal{H}_{2g+2}} \sum_{\substack{n=0\\N \neq \Box}}^g \sum_{\substack{N \in \mathbb{A}_n^+\\N \neq \Box}} \chi_D(N) = O\left(2^g q^g\right)$$

and

(2.11)

$$(1+q^{-1})q^{-g}\sum_{D\in\mathcal{H}_{2g+2}}\sum_{n=0}^{g-1}\left(\frac{(-1)^n+(-1)^{g+1}}{2}\right)\sum_{\substack{N\in\mathbb{A}_n^+\\N\neq\square}}\chi_D(N)=O\left(2^gq^g\right).$$

Proof. As in [2, Lemma 6.4], for any non-square $N \in \mathbb{A}^+$, we have

(2.12)
$$\sum_{D \in \mathcal{H}_{2g+2}} \chi_D(N) \ll q^{g+1} 2^{\deg N - 1}.$$

Using (2.12), we have

$$\sum_{D \in \mathcal{H}_{2g+2}} \sum_{n=0}^{g} (-1)^n q^{-n} \sum_{\substack{N \in \mathbb{A}_n^+ \\ N \neq \square}} \chi_D(N) \ll \sum_{n=0}^{g} q^{-n} \sum_{\substack{N \in \mathbb{A}_n^+ \\ N \neq \square}} q^{g+1} 2^{n-1}$$
$$\ll q^g \sum_{n=0}^{g} 2^n \ll 2^g q^g,$$

$$(-1)^{g} q^{-(g+1)} \sum_{D \in \mathcal{H}_{2g+2}} \sum_{n=0}^{g} \sum_{\substack{N \in \mathbb{A}_{n}^{+} \\ N \neq \Box}} \chi_{D}(N) \ll q^{-(g+1)} \sum_{n=0}^{g} \sum_{\substack{N \in \mathbb{A}_{n}^{+} \\ N \neq \Box}} q^{g+1} 2^{n-1} \\ \ll \sum_{n=0}^{g} 2^{n} q^{n} \ll 2^{g} q^{g}$$

and

$$(1+q^{-1})q^{-g}\sum_{D\in\mathcal{H}_{2g+2}}\sum_{n=0}^{g-1}\left(\frac{(-1)^n+(-1)^{g+1}}{2}\right)\sum_{\substack{N\in\mathbb{A}_n^+\\N\neq\square}}\chi_D(N)$$
$$\ll (1+q^{-1})q^{-g}\sum_{n=0}^{g-1}\sum_{N\in\mathbb{A}_n^+}q^{g+1}2^{n-1}$$
$$\ll (q+1)\sum_{n=0}^{g-1}2^nq^n\ll 2^gq^g.$$

3. Proof of Theorem 1.1

By Lemma 2.1, we have

(3.1)

$$\sum_{D \in \mathcal{H}_{2g+2}} L(1, \chi_{\bar{D}}) = \sum_{D \in \mathcal{H}_{2g+2}} \sum_{n=0}^{g} (-1)^n q^{-n} \sum_{N \in \mathbb{A}_n^+} \chi_D(N) + (-1)^g q^{-(g+1)}$$
$$\sum_{D \in \mathcal{H}_{2g+2}} \sum_{n=0}^{g} \sum_{N \in \mathbb{A}_n^+} \chi_D(N)$$
$$+ (1+q^{-1})q^{-g} \sum_{D \in \mathcal{H}_{2g+2}} \sum_{n=0}^{g-1} \left(\frac{(-1)^n + (-1)^{g+1}}{2} \right) \sum_{N \in \mathbb{A}_n^+} \chi_D(N).$$

By (2.5) and (2.9), we have

(3.2)
$$\sum_{D \in \mathcal{H}_{2g+2}} \sum_{n=0}^{g} (-1)^n q^{-n} \sum_{N \in \mathbb{A}_n^+} \chi_D(N) \\ = |D| \mathcal{P}(2) - q^{-([\frac{g}{2}]+1)} |D| \mathcal{P}(1) + O\left(2^{g+1}q^{g+1}\right)$$

and, by (2.6) and (2.10), we have

(3.3)
$$(-1)^{g} q^{-(g+1)} \sum_{D \in \mathcal{H}_{2g+2}} \sum_{n=0}^{g} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{D}(N)$$
$$= (-1)^{g} q^{-(g+1) + [\frac{g}{2}]} |D| P(1) + O\left(2^{g+1} q^{g+1}\right).$$

Similarly, by (2.7) and (2.11), we have

(3.4)
$$(1+q^{-1})q^{-g} \sum_{D \in \mathcal{H}_{2g+2}} \sum_{n=0}^{g-1} \left(\frac{(-1)^n + (-1)^{g+1}}{2} \right) \sum_{N \in \mathbb{A}_n^+} \chi_D(N)$$
$$= (q+1)q^{-g+\left[\frac{g-1}{2}\right]-1} \left(\frac{1+(-1)^{g+1}}{2} \right) |D| P(1) + O\left(2^g q^g\right).$$

It is easy to see that

$$(-1)^{g}q^{-(g+1)+\left[\frac{g}{2}\right]} + (q+1)q^{-g+\left[\frac{g-1}{2}\right]-1}\left(\frac{1+(-1)^{g+1}}{2}\right) - q^{-\left(\left[\frac{g}{2}\right]+1\right)} = 0.$$

Hence, by inserting (3.2), (3.3) and (3.4) into (3.1), we get

$$\sum_{D \in \mathcal{H}_{2g+2}} L(1, \chi_{\bar{D}}) = |D| \mathcal{P}(2) + O(2^g q^g).$$

References

- J.C. Andrade, A note on the mean value of L-functions in function fields. Int. J. Number Theory, 08 (2012), no. 12, 1725–1740.
- [2] J.C. Andrade and J.P. Keating, The mean value of L(¹/₂, χ) in the hyperelliptic ensemble. J. Number Theory 132 (2012), no. 12, 2793–2816.
- [3] J. Hoffstein and M. Rosen, Average values of L-series in function fields. J. Reine Angew. Math. 426 (1992), 117–150.
- [4] H. Jung, A note on the mean value of $L(1, \chi)$ in the hyperelliptic ensemble. To appear in Int. J. Number Theory.
- [5] M. Rosen, Number theory in function fields. Graduate Texts in Mathematics 210, Springer-Verlag, New York, 2002.

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Korea *E-mail*: hyjung@chungbuk.ac.kr