ON ALMOST n-SIMPLY PRESENTED ABELIAN p-GROUPS

Peter V. Danchev

Abstract

Let $n \geq 0$ be an arbitrary integer. We define the class of almost n-simply presented abelian p-groups. It naturally strengthens all the notions of almost simply presented groups introduced by Hill and Ullery in Czechoslovak Math. J. (1996), n-simply presented p-groups defined by the present author and Keef in Houston J. Math. (2012), and almost $\omega_{1}-p^{\omega+n}$-projective groups developed by the same author in an upcoming publication [3]. Some comprehensive characterizations of the new concept are established such as Nunke-esque results as well as results on direct summands and ω_{1}-bijections.

1. Introduction and Backgrounds

Throughout the current paper, we assume that p is a fixed prime integer and all groups into consideration are additive p-torsion abelian. All crucial notions and notations will follow those from [8] and [9]; the new ones will be explained in the sequel. For instance,

$$
G\left[p^{n}\right]=\left\{g \in G: p^{n} g=0, n \in \mathbb{N}\right\}
$$

is said to be the p^{n}-socle of G that plays a significant role in our further investigation.

[^0]Likewise, for any $i \in \mathbb{N}$, we have

$$
p^{i} G=\left\{p^{i} g: g \in G\right\}
$$

which is called the p^{i}-power subgroup of G. Set $p^{\omega} G=\cap_{i<\omega} p^{i} G$, called first Ulm subgroup, and we will say that G is separable if $p^{\omega} G=\{0\}$. By analogy, for every ordinal α, one can define $p^{\alpha} G$ as follows: $p^{\alpha} G=$ $p\left(p^{\alpha-1} G\right)$ if α is non-limit, or $p^{\alpha} G=\cap_{\beta<\alpha} p^{\beta} G$ otherwise. A subgroup N of a group G is said to be nice if, for any ordinal α, the equality $p^{\alpha}(G / N)=\left(p^{\alpha} G+N\right) / N$ is fulfilled.

In their seminal works [11] and [12], Hill and Ullery have given the following critical

Definition 1. The reduced group G is called almost totally projective if it has a collection \mathcal{C} consisting of nice subgroups of G satisfying the following three conditions:
(1) $\{0\} \in \mathcal{C}$;
(2) \mathcal{C} is closed with respect to ascending unions, i.e., if $H_{i} \in \mathcal{C}$ with $H_{i} \subseteq H_{j}$ whenever $i \leq j(i, j \in I)$ then $\cup_{i \in I} H_{i} \in \mathcal{C}$;
(3) If K is a countable subgroup of G, then there is $L \in \mathcal{C}$ (that is, a nice subgroup L of G) such that $K \subseteq L$ and L is countable.

This concept generalizes the notion of almost Σ-cyclic groups defined in [10]. Actually separable almost totally projective groups are almost Σ-cyclic.

Moreover, the direct sum of a divisible group and an almost totally projective group was called almost simply presented.

Paralleling, the current author defines in [3] the following:
Definition 2. The group G is said to be almost $p^{\omega+n}$-projective if there is $B \leq G\left[p^{n}\right]$ such that G / B is almost \sum-cyclic.

In addition, if there exists a countable subgroup $C \leq G$ with the property that G / C is almost $p^{\omega+n}$-projective, then we will say that G is almost $\omega_{1}-p^{\omega+n}$-projective.

On the other hand, in [14] was formulated the following:
Definition 3. The group G is called n-simply presented if there exists $P \leq G\left[p^{n}\right]$ with the property that G / P is simply presented.

This is a natural enlargement of $p^{\omega+n}$-projectives, so that it seems that we can use this idea to refine the statement of Definition 2.

And so, the goal of this article is to combine Definitions 1 and 3 into the following extension of Definition 2.

Definition 4. The group G is said to be almost n-simply presented if there is $H \leq G\left[p^{n}\right]$ such that G / H is almost simply presented.

If G / H is almost totally projective, then we will say that G is almost n-totally projective.

In case that H is nice in G, we give
Definition 5. The group G is called nicely almost n-simply presented (resp. nicely almost n-totally projective) if there exists a p^{n}-bounded nice subgroup $N \leq G$ with G / N almost simply presented (resp. almost totally projective).

In terms of [14] these groups could be named strongly almost n-simply presented and strongly almost n-totally projective.

Apparently almost $p^{\omega+n}$-projectives are nicely almost n-totally projective. Since almost simply presented groups of cardinality at most \aleph_{1} are simply presented (see [12]), it is easy to see that almost n-simply presented groups of cardinality not exceeding \aleph_{1} are n-simply presented, a class of groups which was comprehensively developed in [14]. Thus to avoid any duplication and triviality of the results, our almost n-simply presented groups will be of cardinalities at least \aleph_{2} since in [12] was showed that there is an almost simply presented group of cardinality \aleph_{2} that is not simply presented.

Our main achievements will be proved in details in the next section.

2. Basic Results

We start here with three technicalities.
Lemma 2.1. Suppose A is a group with a subgroup B such that A / B is bounded, and suppose $A \leq G$ for some group G. The following two conditions hold:
(a) If N is nice in B, then N is nice in A.
(b) If M is nice in A, then $M \cap B$ is nice in B.

Proof. (a) Let $p^{t} A \subseteq B$ for some $t \in \mathbb{N}$. Since $p^{\omega} A=p^{\omega} B$, and hence $p^{\lambda} A=p^{\lambda} B$ for each $\lambda \geq \omega$, we need show only that $\cap_{k<\omega}\left(N+p^{k} A\right)=$ $N+p^{\omega} A$. In fact, $\cap_{k<\omega}\left(N+p^{k} A\right)=\cap_{t \leq k<\omega}\left(N+p^{k} A\right) \subseteq \cap_{i<\omega}\left(N+p^{i} B\right)=$ $N+p^{\omega} B=N+p^{\omega} A$, as required.
(b) For every limit ordinal β we have with the aid of the modular law that $\cap_{\alpha<\beta}\left(M \cap B+p^{\alpha} B\right) \subseteq \cap_{\alpha<\beta}\left(M+p^{\alpha} A\right) \cap B=\left(M+p^{\beta} A\right) \cap B=$ $\left(M+p^{\beta} B\right) \cap B=M \cap B+p^{\beta} B$, as required.

Lemma 2.2. Let λ be an ordinal, k a positive integer, and G a group with a subgroup P. If $P \cap p^{\lambda+k} G$ is nice in $p^{\lambda+k} G$, then $P \cap p^{\lambda} G$ is nice in $p^{\lambda} G$.

Proof. For each limit ordinal β we write

$$
\cap_{\alpha<\beta}\left(P \cap p^{\lambda+k} G+p^{\lambda+k+\alpha} G\right)=P \cap p^{\lambda+k} G+p^{\lambda+k+\beta} G=P \cap p^{\lambda+k} G+p^{\lambda+\beta} G .
$$

We shall consider two cases about β.
Case 1: $\beta \geq \omega \cdot 2$. Then α can be chosen to be $\geq \omega$. Hence we have

$$
\cap_{\alpha<\beta}\left(P \cap p^{\lambda+k} G+p^{\lambda+\alpha} G\right)=P \cap p^{\lambda+k} G+p^{\lambda+\beta} G
$$

Summarizing in both sides the intersection $P \cap p^{\lambda} G$, we derive that

$$
\cap_{\alpha<\beta}\left(P \cap p^{\lambda+k} G+p^{\lambda+\alpha} G\right)+P \cap p^{\lambda} G=P \cap p^{\lambda} G+p^{\lambda+\beta} G .
$$

But

$$
\cap_{\alpha<\beta}\left(P \cap p^{\lambda+k} G+p^{\lambda+\alpha} G\right)+P \cap p^{\lambda} G=\cap_{\alpha<\beta}\left(P \cap p^{\lambda} G+p^{\lambda+\alpha} G\right)
$$

In fact, the left inclusion " \subseteq " is self-evident, so that we consider the right one " \supseteq ". To that aim, given $x \in \cap_{\alpha<\beta}\left(P \cap p^{\lambda} G+p^{\lambda+\alpha} G\right)$, whence $x=a_{1}+b_{1 \alpha}=\cdots=c_{1}+b_{1 \tau}=\cdots$ where $a_{1}, c_{1} \in P \cap p^{\lambda} G$ and $b_{1 \alpha} \in$ $p^{\lambda+\alpha} G, b_{1 \tau} \in p^{\lambda+\tau} G$ for some arbitrary ordinal τ such that $\alpha<\tau<\beta$. Observe that $b_{1 \alpha}-b_{1 \tau}=c_{1}-a_{1} \in p^{\lambda+k} G \cap\left(P \cap p^{\lambda} G\right)=P \cap p^{\lambda+k} G$ because $\alpha>k$. Thus $b_{1 \alpha} \in P \cap p^{\lambda+k} G+p^{\lambda+\tau} G$ for every τ, which means that $b_{1 \alpha} \in \cap_{\alpha<\beta}\left(P \cap p^{\lambda+k} G+p^{\lambda+\alpha} G\right)$. Finally, $x \in P \cap p^{\lambda} G+$ $\cap_{\alpha<\beta}\left(P \cap p^{\lambda+k} G+p^{\lambda+\alpha} G\right)$, as wanted. The obtained equality gives that $\cap_{\alpha<\beta}\left(P \cap p^{\lambda} G+p^{\lambda+\alpha} G\right)=P \cap p^{\lambda} G+p^{\lambda+\beta} G$, as required.

Case 2: $\beta=\omega$. Therefore, α is natural, and we write

$$
\cap_{\alpha<\beta}\left(P \cap p^{\lambda+k} G+p^{\lambda+k+\alpha} G\right)=P \cap p^{\lambda+k} G+p^{\lambda+\beta} G
$$

However, we can choose these α such that $\alpha=i-k$ with $i \geq k+1$ and hence

$$
\cap_{1<\omega}\left(P \cap p^{\lambda+k} G+p^{\lambda+i} G\right)=P \cap p^{\lambda+k} G+p^{\lambda+\omega} G
$$

Again as above adding $P \cap p^{\lambda} G$ in both sides of the last identity, we deduce as before that

$$
\cap_{1<\omega}\left(P \cap p^{\lambda} G+p^{\lambda+i} G\right)=P \cap p^{\lambda} G+p^{\lambda+\omega} G,
$$

as desired.
Lemma 2.3. Let A be a group with a subgroup B such that A / B is bounded. Then
(i) A is almost Σ-cyclic if and only if B is almost Σ-cyclic.
(ii) A is almost simply presented if and only if B is almost simply presented.
(iii) A is (nicely) almost n-simply presented if and only if B is (nicely) almost n-simply presented.

Proof. (i) The necessity follows immediately from [1].
Concerning the sufficiency, since $p^{m} A \subseteq B$ for some $m \in \mathbb{N}$, again [1] allows us to deduce that $p^{m} A$ is almost Σ-cyclic. We henceforth appeal to [12] to obtain that the same is A, as asserted.
(ii) Since $p^{m} A \subseteq B$ for some $m \in \mathbb{N}$, it readily follows that $p^{\omega} A=$ $p^{\omega} B$. Moreover, $B / p^{\omega} B \subseteq A / p^{\omega} A$.

To prove the necessity, utilizing [12], $A / p^{\omega} A$ is almost Σ-cyclic, and thus [1] can be applied to get that so is $B / p^{\omega} B$. Besides, again [12] tells us that $p^{\omega} B=p^{\omega} A$ remains almost simply presented, so that a new third application of [12] guarantees that B must be almost simply presented.

Conversely, to show the sufficiency, as above $p^{\omega} A=p^{\omega} B$ and $B / p^{\omega} B$ are almost simply presented. Moreover, since $A / p^{\omega} A / B / p^{\omega} B \cong A / B$ is bounded, point (i) implies that $A / p^{\omega} A$ is almost simply presented. Finally, [12] again insures that A is almost simply presented, as formulated.
(iii) To prove the necessity, let A / P is almost simply presented for some $P \leq A\left[p^{n}\right]$. But $A / P /(B+P) / P \cong A /(B+P) \cong A / B /(B+P) / B$ is bounded, so that point (ii) forces that $(B+P) / P \cong B /(B \cap P)$ is almost simply presented. And finally, since $P \cap B$ is contained in $B\left[p^{n}\right]$, the claim follows.

To show now the sufficiency, assume that B / P is almost simply presented for some $P \leq A\left[p^{n}\right]$. Since $A / P / B / P \cong A / B$ is bounded, point (ii) gives that A / P is almost simply presented, as required.

The nicely part follows by applying Lemma 2.1.
Lemma 2.4. Suppose that A is a group such that $p^{\lambda} A$ is bounded for some ordinal λ, and suppose $Y \subseteq p^{\lambda} A$. Then A is almost simply presented if and only if A / Y is almost simply presented.

Proof. Since

$$
A / p^{\lambda} A \cong A / Y / p^{\lambda} A / Y=A / Y / p^{\lambda}(A / Y)
$$

we apply a result from [12] which says that A is almost simply presented if and only if $A / p^{\lambda} A$ is almost simply presented. Again employing the same assertion to A / Y, we are finished.

We continue with the consideration of the separable case.
Proposition 2.5. If G is a separable almost n-simply presented group, then G is almost $p^{\omega+n}$-projective.

Proof. Let G / H be almost simply presented for some $H \leq G$ with $p^{n} H=\{0\}$. Exploiting [11], $G / H / p^{\omega}(G / H) \cong G / \cap_{i<\omega}\left(p^{i} G+H\right)$ is almost Σ-cyclic. But $p^{n}\left(\cap_{i<\omega}\left(p^{i} G+H\right)\right)=p^{\omega} G=\{0\}$, as required.

For $p^{\omega+n}$-bounded groups, we can obtain even more:
Proposition 2.6. Suppose G is a group such that $p^{\omega+n} G=\{0\}$. If G is nicely almost n-simply presented, then G is almost $p^{\omega+n}$-projective.

Proof. Assume that G / N is almost simply presented for some nice subgroup $N \leq G$ such that $p^{n} N=\{0\}$. Again in virtue of [12], the quotient $G / N / p^{\omega}(G / N) \cong G /\left(p^{\omega} G+N\right)$ is almost Σ-cyclic. However, $p^{n}\left(p^{\omega} G+N\right)=\{0\}$, and even $p^{\omega} G+N$ remains nice in G, as needed.

We will now explore whether or not Ulm subgroups and Ulm factors reserve the property of being (nicely) almost n-simply presented provided that the full group possesses it, as well as having such a property they imply it on the whole group.

Theorem 2.7. (a) Suppose that G is almost n-simply presented. Then, for any ordinal λ, both $p^{\lambda} G$ and $G / p^{\lambda} G$ are almost n-simply presented.
(b) Suppose that G is nicely almost n-simply presented. Then, for any ordinal λ, both $p^{\lambda} G$ and $G / p^{\lambda} G$ are nicely almost n-simply presented.

Proof. (a) Assume that G / H is almost simply presented for some $H \leq G\left[p^{n}\right]$. By [12] $p^{\lambda+n}(G / H)$ remains almost simply presented, and moreover

$$
p^{\lambda+n}(G / H) /\left(p^{\lambda+n} G+H\right) / H \cong X /\left(p^{\lambda+n} G+H\right)
$$

where $X \leq G$ with $X / H=p^{\lambda+n}(G / H)$. But $p^{n} X \subseteq p^{\lambda+n} G+H$, so that the right hand-side is bounded by p^{n}. Thus Lemma 2.3 applies to get that $\left(p^{\lambda+n} G+H\right) / H$ is almost simply presented. However, the quotient $\left(p^{\lambda} G+H\right) / H /\left(p^{\lambda+n} G+H\right) / H \cong\left(p^{\lambda} G+H\right) /\left(p^{\lambda+n} G+H\right)$ is also p^{n} bounded, so that again Lemma 2.3 works to infer that $\left(p^{\lambda} G+H\right) / H \cong$
$p^{\lambda} G /\left(p^{\lambda} G \cap H\right)$ is almost simply presented. Since $p^{\lambda} G \cap H \leq\left(p^{\lambda} G\right)\left[p^{n}\right]$, we are done with the first part.

Now dealing with the second half, we first observe that

$$
G / p^{\lambda} G /\left(p^{\lambda} G+H\right) / p^{\lambda} G \cong G /\left(p^{\lambda} G+H\right) \cong G / H /\left(p^{\lambda} G+H\right) / H,
$$

where $\left(p^{\lambda} G+H\right) / p^{\lambda} G \cong H /\left(H \cap p^{\lambda} G\right.$ is p^{n}-bounded. But

$$
\begin{aligned}
& G / H / p^{\lambda+n}(G / H) /\left(p^{\lambda} G+H\right) / H / p^{\lambda+n}(G / H) \\
& \cong G / H /\left(p^{\lambda} G+H\right) / H \cong G /\left(p^{\lambda} G+H\right)
\end{aligned}
$$

and $\left(p^{\lambda} G+H\right) / H / p^{\lambda+n}(G / H) \subseteq p^{\lambda}\left(G / H / p^{\lambda+n}(G / H)\right)$ is p^{n}-bounded, hence Lemma 2.4 is applicable to conclude that $G / p^{\lambda} G$ is almost n simply presented, as stated.
(b) Let us assume that G / N is almost simply presented for some nice $N \leq G$ with $p^{n} N=\{0\}$. Since $p^{\lambda}(G / N)=\left(p^{\lambda} G+N\right) / N \cong$ $p^{\lambda} G /\left(p^{\lambda} G \cap N\right)$ is also almost simply presented and $p^{\lambda} G \cap N$ is nice in $p^{\lambda} G$ such that $p^{n}\left(p^{\lambda} G \cap N\right)=\{0\}$, we conclude that $p^{\lambda} G$ is nicely almost n-simply presented too.

Moreover,

$$
\begin{aligned}
& G / p^{\lambda} G /\left(N+p^{\lambda} G\right) / p^{\lambda} G \cong G /\left(N+p^{\lambda} G\right) \\
& \cong G / N /\left(N+p^{\lambda} G\right) / N=G / N / p^{\lambda}(G / N)
\end{aligned}
$$

must be almost simply presented. However, $N+p^{\lambda} G$ remains nice in G, so that $\left(N+p^{\lambda} G\right) / p^{\lambda} G$ is so in $G / p^{\lambda} G$. Since $\left(N+p^{\lambda} G\right) / p^{\lambda} G \cong$ $N /\left(N \cap p^{\lambda} G\right)$ is obviously p^{n}-bounded, the result follows.

As a useful consequence, we yield:
Corollary 2.8. If G is an almost n-simply presented group, then $G / p^{\omega} G$ is almost $p^{\omega+n}$-projective.

Proof. Follows by a combination of Theorem 2.7 (a) applied to $\lambda=\omega$, along with Proposition 2.5.

Under some extra circumstances the reverse also holds:
Proposition 2.9. Suppose G is a group whose $G / p^{\lambda} G$ is n-simply presented for some ordinal λ. Then G is almost n-simply presented if and only if $p^{\lambda} G$ is almost n-simply presented.

Proof. The "and only if" part follows from Theorem 2.7(a).
As for the "if" part, since

$$
G / p^{\lambda} G \cong G / p^{\lambda+n} G / p^{\lambda} G / p^{\lambda+n} G=G / p^{\lambda+n} G / p^{\lambda}\left(G / p^{\lambda+n} G\right),
$$

is n-simply presented, where $p^{\lambda}\left(G / p^{\lambda+n} G\right)$ is clearly p^{n}-bounded, we take into account Theorem 4.5 from [14] to establish that $G / p^{\lambda+n} G$ is n-simply presented.

On the other hand, Lemma 2.3 (iii) ensures that $p^{\lambda+n} G$ is almost n-simply presented because the factor-group $p^{\lambda} G / p^{\lambda+n} G$ is obviously bounded (by p^{n}). So, Theorem 2.10 presented below yields the wanted claim.

For ordinals α of the special type $\lambda+n$ for some arbitrary ordinal λ, the last achievement can be somewhat strengthened to the following one:

Theorem 2.10. Let G be a group, λ an ordinal and n a positive integer. Then G is (nicely) almost n-simply presented if and only if $p^{\lambda+n} G$ and $G / p^{\lambda+n} G$ are both (nicely) almost n-simply presented.

Proof. The implication " \Rightarrow " follows by a direct application of Theorem 2.7.

For the implication " \Leftarrow ", let $P_{1} \leq G$ contain $p^{\lambda+n} G$ such that $G / P_{1} \cong$ $G / p^{\lambda+n} G / P_{1} / p^{\lambda+n} G$ is almost simply presented and $p^{n} P_{1} \subseteq p^{\lambda+n} G$.

Suppose Y is a maximal p^{n}-bounded summand of $p^{\lambda} G$, so that the decomposition $p^{\lambda} G=X \oplus Y$ holds. Observe that $p^{\lambda+n} G=p^{n} X$, so that $Y \cap p^{\lambda+n} G=\{0\}$. Let H be a $p^{\lambda+n}$-high subgroup of G containing Y. One easily sees that $\left(p^{\lambda+n} G\right)[p]=X[p]$, so that $H \cap X=\{0\}$. Moreover, since $G[p]=\left(p^{\lambda+n} G\right)[p] \oplus H[p]=X[p] \oplus H[p]$ and since H is pure in G (see, e.g., [8]), it is readily checked that $G\left[p^{n}\right]=X\left[p^{n}\right] \oplus H\left[p^{n}\right]$.

We next claim that

$$
\left(G / p^{\lambda+n} G\right)\left[p^{n}\right]=\left(X \oplus H\left[p^{n}\right]\right) / p^{\lambda+n} G
$$

To verify this, since the right hand-side is obviously contained in the left one, choose $x \in G$ with $p^{n} x \in p^{\lambda+n} G$. Thus $p^{n} x \in p^{n} X$ and hence $x \in X+G\left[p^{n}\right]=X \oplus H\left[p^{n}\right]$, as required.

By what we have shown above, $P_{1} \subseteq X \oplus H\left[p^{n}\right]$. Setting $P_{2}=$ $\left(P_{1}+X\right) \cap H\left[p^{n}\right]$, we derive with the modular law at hand that $X+P_{1}=\left(X+P_{1}\right) \cap\left(X \oplus H\left[p^{n}\right]\right)=X+\left(X+P_{1}\right) \cap H\left[p^{n}\right]=X+P_{2}$.

Consequently, by adding on both sides $p^{\lambda} G$, we have that $P_{1}+p^{\lambda} G=$ $P_{2}+p^{\lambda} G$.

On the other hand, let $p^{\lambda+n} G / P_{3}=p^{\lambda+n}\left(G / P_{3}\right)$ be almost simply presented such that $p^{n} P_{3}=\{0\}$. Letting $P=P_{2}+P_{3}$, we observe that $P \leq G\left[p^{n}\right]$, that $p^{\lambda+n} G \cap P=P_{3}$ and that $p^{\lambda} G+P=p^{\lambda} G+P_{2}=p^{\lambda} G+P_{1}$.

Hence $p^{\lambda+n} G /\left(p^{\lambda+n} G \cap P\right) \cong\left(p^{\lambda+n} G+P\right) / P$ is almost simply presented. Since $\left(p^{\lambda} G+P\right) /\left(p^{\lambda+n} G+P\right)$ is clearly bounded by p^{n}, it therefore follows from Lemma 2.3 (ii) that $\left(p^{\lambda} G+P\right) / P \cong p^{\lambda} G /\left(p^{\lambda} G \cap P\right)$ is almost simply presented. And since $p^{\lambda}(G / P) /\left(p^{\lambda} G+P\right) / P$ is bounded by p^{n} because $p^{\lambda+n}(G / P) \subseteq\left(p^{\lambda} G+P\right) / P$, we once again refer to Lemma 2.3 to get that $p^{\lambda}(G / P)$ is almost simply presented.

Furthermore, Lemma 2.4 is in use to show that

$$
G /\left(p^{\lambda} G+P\right)=G /\left(p^{\lambda} G+P_{1}\right) \cong G / P_{1} /\left(p^{\lambda} G+P_{1}\right) / P_{1}
$$

is almost simply presented, because $\left(p^{\lambda} G+P_{1}\right) / P_{1} \subseteq p^{\lambda}\left(G / P_{1}\right)$ and the latter is bounded by $p^{2 n}$ since $p^{n}\left(P_{1} / p^{\lambda+n} G\right)=\{0\}$ and $G / P_{1} \cong$ $G / p^{\lambda+n} G / P_{1} / p^{\lambda+n} G$. So, we further have that

$$
G /\left(p^{\lambda} G+P\right) \cong G / P /\left(p^{\lambda} G+P\right) / P
$$

is almost simply presented, and so [12] enables us that

$$
\begin{aligned}
G / P / p^{\lambda}(G / P) & \cong G / P /\left(p^{\lambda} G+P\right) / P / p^{\lambda}(G / P) /\left(p^{\lambda} G+P\right) / P \\
& =G / P /\left(p^{\lambda} G+P\right) / P / p^{\lambda}\left(G / P /\left(p^{\lambda} G+P\right) / P\right)
\end{aligned}
$$

is also almost simply presented, which again by [12] means that G / P is almost simply presented, as wanted.

The "nicely" part follows like this: By definition we assume that $P_{1} / p^{\lambda+n} G$ is nice in $G / p^{\lambda+n} G$ whence, with the help of [8], the subgroup P_{1} should be nice in G. Likewise, by definition P_{3} is nice in $p^{\lambda+n} G$ and hence in G (see [8] too). We claim that P is nice in G as well. In fact, P_{1} being nice in G plainly implies that $P_{1}+p^{\lambda} G=P+p^{\lambda} G$ is nice in G. On the other hand, by what we have shown above, $p^{\lambda+n} G \cap P=P_{3}$ is nice in G. Now Lemma 2.2 works to infer that $p^{\lambda} G \cap P$ is nice in G. We finally appeal once again to [8] to conclude that P has to be nice in G, indeed, as asserted.

As an interesting consequence, we deduce:
Corollary 2.11. Let G be a group and λ an ordinal such that $G / p^{\lambda} G$ is almost simply presented. Then G is (nicely) almost n-simply presented if and only if $p^{\lambda} G$ is (nicely) almost n-simply presented.

Proof. The necessity follows directly from Theorem 2.7 , so that we now concentrate on the sufficiency. To that end, we claim that $p^{\lambda+n} G$ is (nicely) almost n-simply presented and claim that $G / p^{\lambda+n} G$ is almost simply presented, whence Theorem 2.10 will work. In fact, since
$p^{\lambda} G / p^{\lambda+n} G$ is bounded by p^{n}, Lemma 2.3 (iii) tells us that our first claim is true. As for the second one,

$$
G / p^{\lambda} G \cong G / p^{\lambda+n} G / p^{\lambda} G / p^{\lambda+n} G=G / p^{\lambda+n} G / p^{\lambda}\left(G / p^{\lambda+n} G\right),
$$

is almost simply presented, where $p^{\lambda}\left(G / p^{\lambda+n} G\right)$ is clearly p^{n}-bounded, and hence [12] enables us that $G / p^{\lambda+n} G$ is almost simply presented, indeed, as claimed.

Proposition 2.12. Suppose G is a group of length λ strictly less than ω^{2}. Then G is nicely almost n-simply presented if and only if, for each non-negative integer $m, p^{\omega \cdot m+n} G / p^{\omega \cdot(m+1)+n} G$ is almost $p^{\omega+n}$-projective.

Proof. " \Rightarrow ". From Theorem 2.7 (b), $G / p^{\omega \cdot(m+1)+n} G$ is also nicely almost n-simply presented. Henceforth, we once again appeal to Theorem 2.7 (b) to get that $p^{\omega \cdot m+n}\left(G / p^{\omega \cdot(m+1)+n} G\right)=p^{\omega \cdot m+n} G / p^{\omega \cdot(m+1)+n} G$ is nicely almost n-simply presented too. But $p^{\omega \cdot m+n} G / p^{\omega \cdot(m+1)+n} G$ is obviously $p^{\omega+n}$-bounded, whence Proposition 2.6 assures that this quotient is actually almost $p^{\omega+n}$-projective.
$" \Leftarrow "$. For $m=0$ we have that $p^{n} G / p^{\omega+n} G=p^{n}\left(G / p^{\omega+n} G\right)$ is almost $p^{\omega+n}$-projective, so that the same holds for $G / p^{\omega+n} G$. When $m=$ 1 we obtain that $p^{\omega+n} G / p^{\omega \cdot 2+n} G=p^{\omega+n}\left(G / p^{\omega \cdot 2+n} G\right)$ is almost $p^{\omega+n}$ projective. But $G / p^{\omega+n} G \cong G / p^{\omega \cdot 2+n} G / p^{\omega+n} G / p^{\omega \cdot 2+n} G=G / p^{\omega \cdot 2+n}$ $G / p^{\omega+n}\left(G / p^{\omega \cdot 2+n} G\right)$ is almost $p^{\omega+n}$-projective. Therefore, Theorem 2.10 works to get that $G / p^{\omega \cdot 2+n} G$ is nicely almost n-simply presented, etc. after final steps to $G / p^{\lambda} G \cong G$ is nicely almost n-simply presented.

For groups with countable first Ulm subgroup, the situation is the following:

Theorem 2.13. Suppose G is a group whose $p^{\omega} G$ is countable. Then G is almost n-simply presented if and only if G is almost $\omega_{1}-p^{\omega+n}$ projective.

Proof. Firstly, note that in [3] was established that G is almost ω_{1-} $p^{\omega+n}$-projective exactly when $G / p^{\omega} G$ is almost $p^{\omega+n}$-projective, provided $p^{\omega} G$ is countable. Thus our claim restricts to that proving that G is almost n-simply presented precisely when $G / p^{\omega} G$ is almost $p^{\omega+n}$ projective.

The implication " \Rightarrow " now follows by a simple combination of Corollary 2.8 and Definition 2.

As for the implication " \Leftarrow ", $G / p^{\omega} G$ being almost $p^{\omega+n}$-projective forces that $G / p^{\omega} G / A / p^{\omega} G \cong G / A$ is almost Σ-cyclic for some $A \leq G$
such that $p^{n} A \subseteq p^{\omega} G$. Therefore, $A=K \oplus P$ where K is countable and P is p^{n}-bounded. Hence $G / A \cong G / P / A / P$ where $A / P \cong K$ is countable. Using [3], G / P must be almost simply presented, as expected.

Remark 1. The last assertion extends Proposition 2.5. It is also a strengthening of the fact that G is n-simply presented uniquely when G is $\omega_{1}-p^{\omega+n}$-projective whenever $p^{\omega} G$ is countable.

In that aspect we can strengthen Proposition 2.6 to the following one:
Theorem 2.14. Let G be a group for which $p^{\omega+n} G$ is countable. If G is nicely almost n-simply presented, then G is almost $\omega_{1}-p^{\omega+n}$-projective.

Proof. The usage of Theorem 2.7 (b) gives that the factor $G / p^{\omega+n} G$ is nicely almost n-simply presented. This combined with Proposition 2.6 allows us to deduce that $G / p^{\omega+n} G$ is almost $p^{\omega+n}$-projective. And since $p^{\omega+n} G$ is countable, we obtain by Definition 2 that G is almost $\omega_{1}-p^{\omega+n}-$ projective, as expected.

It was shown above in Theorem 2.13 that almost $\omega_{1}-p^{\omega+n}$-projective groups are almost n-simply presented, provided that their first Ulm subgroup is countable. In the next statement this limitation will be dropped off.

Proposition 2.15. Almost $\omega_{1}-p^{\omega+n}$-projective groups are almost n simply presented.

Proof. Assume that G is such a group. From ([3], Theorem 2.21 (2)), it follows that there is $P \leq G\left[p^{n}\right]$ such that G / P is the sum of a countable group and an almost Σ-cyclic group. However, it was shown in the proof of Theorem 2.25 again in [3] that this sum is necessarily almost simply presented, as required.

Remark 2. Notice that an almost $\omega_{1}-p^{\omega+n}$-projective group need not be nicely almost n-simply presented.

When $n=0$, i.e., for simply presented groups, Theorem 2.13 can be refined. To achieve this, we first need one more technicality. It is actually a non-trivial generalization of the classical Charles' lemma for Σ-cyclic groups (see, e.g., [7]).

Lemma 2.16. The group G is the sum of a countable group and an almost Σ-cyclic group if and only if there is a countable subgroup $K \leq G$ such that G / K is almost Σ-cyclic.

Proof. " \Rightarrow ". Assume $G=L+S$ where L is countable and S is almost Σ-cyclic. Since $L \cap S \subseteq S$ is countable, there is a countable nice subgroup C of S such that $L \cap S \subseteq C$. In accordance with [3], S / C is almost Σ-cyclic. But

$$
G / C=(L+S) / C=[(L+C) / C] \oplus[S / C]=(K / C) \oplus(S / C)
$$

where we put $K=L+C$. Thus $G / C / K / C \cong G / K \cong S / C$ is almost Σ-cyclic, as stated.
$" \Leftarrow "$. Since $p^{\omega} G \subseteq K$ is countable, we see that the containing group $p^{\omega} G \cong\left(H_{G} \oplus p^{\omega} G\right) / H_{G} \subseteq G / H_{G}$ is also countable because $\left(H_{G} \oplus p^{\omega} G\right) / H_{G}$ is an essential subgroup of G / H_{G} due to the fact that H_{G} is maximal with respect to $H_{G} \cap p^{\omega} G=\{0\}$. Furthermore, one may write $G=H_{G}+C$ for some countable $C \leq G$. However,

$$
H_{G} \cong\left(H_{G} \oplus p^{\omega} G\right) / p^{\omega} G \subseteq G / p^{\omega} G
$$

is almost Σ-cyclic because so is $G / p^{\omega} G$. In fact, $G / K \cong G / p^{\omega} G / K / p^{\omega} G$ is almost Σ-cyclic with countable factor-group $K / p^{\omega} G$, and so we can apply [10] to get that $G / p^{\omega} G$ is almost Σ-cyclic, as claimed.

So, we have at our disposal all the information needed to prove the following-compare also with Theorem 2.13 when $n=0$.

Theorem 2.17. The group G is almost simply presented with countable $p^{\omega} G$ if and only if G is the sum of a countable group and an almost Σ-cyclic group.

Proof. "Necessity". It follows that $G / p^{\omega} G$ is almost Σ-cyclic and $p^{\omega} G$ is countable, so that Lemma 2.16 works.
"Sufficiency". The preceding Lemma 2.16 tells us that there exists a countable subgroup K such that G / K is almost Σ-cyclic. Thus $p^{\omega} G \leq K$ must be countable. Moreover, as we have seen above in the proof of the sufficiency of the previous lemma, $G / p^{\omega} G$ is almost \sum-cyclic. Henceforth, we employ [12] to deduce that G is almost simply presented, as asserted.

Proposition 2.18. Let $\phi: G \rightarrow A$ be an ω_{1}-bijective homomorphism. If G is almost n-simply presented, then A is almost n-simply presented.

Proof. Assume that G / H is almost simply presented for some $H \leq$ $G\left[p^{n}\right]$. Considering the induced homomorphism

$$
\Phi: G / H \rightarrow A / \phi(H)
$$

we deduce that $\operatorname{ker} \Phi=(H+\operatorname{ker} \phi) / H \cong \operatorname{ker} \phi /(\operatorname{ker} \phi \cap H)$ which is countable because ker ϕ is. In addition, $\operatorname{coker} \phi=A / \phi(G) \cong A / \phi(H) / \phi(G) /$ $\phi(H)=A / \phi(H) / \Phi(G / H)=\operatorname{coker} \Phi$ are both countable as well. Thus Φ is also an ω_{1}-bijection. We furthermore apply [6] to conclude that $A / \phi(H)$ is almost simply presented. Since $\phi(H) \subseteq A\left[p^{n}\right]$, the argument is completed.

As a consequence necessary for further applications, we have:
Corollary 2.19. Suppose that G is an almost n-simply presented group and C is its countable subgroup. Then G / C is almost n-simply presented.

Proof. Since the natural map $G \rightarrow G / C$, being an epimorphism, is an ω_{1}-bijection, Proposition 2.18 allows us to conclude that the quotientgroup G / C is almost n-simply presented as well.

Almost n-simply presented groups are also closed under taking countable extensions. Specifically, the following is true:

Proposition 2.20. Let $A \leq G$ with countable factor G / A. If A is almost n-simply presented, then G is almost n-simply presented.

Proof. Write $G=A+K$ for some countable $K \leq G$, and assume that A / P is almost simply presented for some $P \leq A\left[p^{n}\right]$. Therefore, $G / P=[A / P]+[(K+P) / P]$ where $(K+P) / P \cong K /(K \cap P)$ is countable, and an appeal to [11] or [2] gives that G / P is almost simply presented, as required.

Before proving a slight refinement of the preceding result concerning ω_{1}-bijections, two preliminary technical claims are necessary.

Lemma 2.21. Suppose that α is an ordinal, and that G and F are groups where F is finite. Then the following formula is fulfilled:

$$
p^{\alpha}(G+F)=p^{\alpha} G+F \cap p^{\alpha}(G+F) .
$$

Proof. We will use a transfinite induction on α. First, if $\alpha-1$ exists, we have

$$
\begin{array}{r}
p^{\alpha}(G+F)=p\left(p^{\alpha-1}(G+F)\right)=p\left(p^{\alpha-1} G+F \cap p^{\alpha-1}(G+F)\right)= \\
p\left(p^{\alpha-1} G\right)+p\left(F \cap p^{\alpha-1}(G+F)\right) \subseteq p^{\alpha} G+F \cap p\left(p^{\alpha-1}(G+F)\right) \\
=p^{\alpha} G+F \cap p^{\alpha}(G+F) .
\end{array}
$$

Since the reverse inclusion " \supseteq " is obvious, we obtain the desired equality.
If now $\alpha-1$ does not exist, we have that $p^{\alpha}(G+F)=\cap_{\beta<\alpha}\left(p^{\beta}(G+\right.$ $F)) \subseteq \cap_{\beta<\alpha}\left(p^{\beta} G+F\right)=\cap_{\beta<\alpha} p^{\beta} G+F=p^{\alpha} G+F$. In fact, the second sign " $=$ " follows like this: Given $x \in \cap_{\beta<\alpha}\left(p^{\beta} G+F\right)$, we write that $x=g_{\beta_{1}}+f_{1}=\cdots=g_{\beta_{s}}+f_{s}=\cdots$ where $f_{1}, \cdots, f_{s} \in F$ are the all elements of $F ; g_{\beta_{1}} \in p^{\beta_{1}} G, \cdots, g_{\beta_{s}} \in p^{\beta_{s}} G$ with $\beta_{1}<\cdots<\beta_{s}<\cdots$.

Since F is finite, while the number of equalities is infinite due to the infinite cardinality of α, we infer that $g_{\beta_{s}} \in p^{\beta} G$ for any ordinal $\beta<\alpha$ which means that $g_{\beta_{s}} \in \cap_{\beta<\alpha} p^{\beta} G=p^{\alpha} G$. Thus $x \in \cap_{\beta<\alpha} p^{\beta} G+F=$ $p^{\alpha} G+F$, as claimed. Furthermore, $p^{\alpha}(G+F) \subseteq\left(p^{\alpha} G+F\right) \cap p^{\alpha}(G+F)=$ $p^{\alpha} G+F \cap p^{\alpha}(G+F)$ which is obviously equivalent to an equality.

Lemma 2.22. Let N be a nice subgroup of a group G. Then
(i) $N+R$ is nice in G for every finite subgroup $R \leq G$;
(ii) N is nice in $G+F$ for each finite group F.

Proof. (i) For any limit ordinal γ, we deduce that $\cap_{\delta<\gamma}(N+R+$ $\left.p^{\delta} G\right) \subseteq R+\cap_{\delta<\gamma}\left(N+p^{\delta} G\right)=R+N+p^{\gamma} G$, as required. Indeed, the relation " \subseteq " follows like this: Given $x \in \cap_{\delta<\gamma}\left(N+R+p^{\delta} G\right)$, we write $x=a_{1}+r_{1}+g_{1}=\cdots=a_{s}+r_{s}+g_{s}=\cdots=a_{k}+r_{1}+g_{k}=\cdots$, where $a_{1}, \cdots, a_{k} \in N ; r_{1}, \cdots, r_{k} \in R ; g_{1} \in p^{\delta_{1}} G, \cdots, g_{k} \in p^{\delta_{k}} G$ with $\delta_{1}<\cdots<\delta_{k}$. So $a_{1}+g_{1}=\cdots=a_{k}+g_{k}=\cdots \in \cap_{\delta<\gamma}\left(N+p^{\delta} G\right)$ and hence $x \in R+\cap_{\delta<\gamma}\left(N+p^{\delta} G\right)$, as requested.
(ii) Since N is nice in G, we may write $\cap_{\delta<\gamma}\left[N+p^{\delta} G\right]=N+p^{\gamma} G$ for every limit ordinal γ. Furthermore, with Lemma 2.21 at hand, we subsequently deduce that

$$
\begin{gathered}
\cap_{\delta<\gamma}\left[N+p^{\delta}(G+F)\right]=\cap_{\delta<\gamma}\left[N+p^{\delta} G+F \cap p^{\delta}(G+F)\right] \subseteq \\
\cap_{\delta<\gamma}\left(N+p^{\delta} G\right)+F \cap p^{\gamma}(G+F)=N+p^{\gamma} G+F \cap p^{\gamma}(G+F)=N+p^{\gamma}(G+F) .
\end{gathered}
$$

In fact, the inclusion " \subseteq " follows thus: Given $x \in \cap_{\delta<\gamma}\left[N+p^{\delta} G+\right.$ $\left.F \cap p^{\delta}(G+F)\right]$, we write $\bar{x}=a_{1}+g_{1}+f_{1}=\cdots=a_{s}+g_{s}+f_{s}=\cdots=$ $a_{k}+g_{k}+f_{1}=\cdots$, where $a_{1}, \cdots, a_{k} \in N ; g_{1} \in p^{\delta_{1}} G, \cdots, g_{k} \in p^{\delta_{k}} G ;$
$f_{1} \in F \cap p^{\delta_{1}}(G+F), \cdots, f_{k} \in F \cap p^{\delta_{k}}(G+F)$ with $\delta_{1}<\cdots<\delta_{k}$. Hence $a_{1}+g_{1}=\cdots=a_{k}+g_{k}=\cdots \in \cap_{\delta<\gamma}\left(N+p^{\delta} G\right)$ and because the number of the f_{i} 's $(1 \leq i \leq k)$ is finite whereas the number of equalities is not, we can deduce that $f_{1} \in \cap_{\delta<\gamma}\left(F \cap p^{\delta}(G+F)\right)=F \cap p^{\gamma}(G+F)$, as needed.

A helpful statement which we need to prove the next major assertion is the following:

Proposition 2.23. Suppose G is a group with a finite subgroup F. The following two points hold:
(a) Then G is almost n-simply presented if and only if G / F is almost n-simply presented.

In particular, if G is nicely almost n-simply presented, then G / F is nicely almost n-simply presented.
(b) Suppose $A \leq G$ such that G / A is finite. Then G is almost n simply presented if and only if A is almost n-simply presented.

Proof. (a) Assume first that G is almost n-simply presented, so G / P is almost simply presented for some $P \leq G\left[p^{n}\right]$. But

$$
G / P /(F+P) / P \cong G /(F+P) \cong G / F /(F+P) / F
$$

where $(F+P) / P \cong F /(F \cap P)$ is finite while $(F+P) / F \cong P /(P \cap F)$ is p^{n}-bounded, whence Theorem 1.8 from [3] assures that both $G / P /(F+$ $P) / P$ and $G / F /(F+P) / F$ should be almost simply presented. Thus G / F is almost n-simply presented, as stated.

As for the "nicely" case, since P must be by definition nice in G, we observe with the help of Lemma 2.22 that $P+F$ remains nice in G, so $(P+F) / F$ is nice in G / F, as required.

Conversely, given G / F is almost n-simply presented group, we have that $G / F / L / F \cong G / L$ is almost simply presented for some $L \leq G$ with $p^{n} L \subseteq F$. Therefore, one can write $L=M \oplus Q$ where M is bounded by p^{n} whereas Q is finite. Now $G / M / L / M \cong G / L$ is almost simply presented with finite $L / M \cong Q$. Again Theorem 1.8 from [3] is utilized to conclude that G / M is almost simply presented, as needed to get that G is almost n-simply presented.
(b) Write $G=A+E$ where E is a finite subgroup. Thus $G / E=$ $(A+E) / E \cong A /(A \cap E)$ where $A \cap E$ remains finite. Hence we can apply the previous point (a) to infer the equivalence.

We now have all the ingredients needed to establish the following.

Theorem 2.24. Let $\varphi: G \rightarrow A$ be an ω-bijective homomorphism. Then G is almost n-simply presented if and only if A is almost n-simply presented.

In addition, if G is nicely almost n-simply presented, then so is A.
Proof. By considering the natural composition $G \rightarrow \operatorname{Im} \varphi \rightarrow A$, we may break the arguments into the two cases (a) and (b) of Proposition 2.23.

However, when the subgroup is taken a priori to be nice in the whole group, some improvements can be established, thus enlarging Proposition 5.3 from [14] to almost n-simply presented groups (for results of that type the reader can see [6]).

Theorem 2.25. Let N be a countable nice subgroup of a group G such that $p^{\omega} G$ is countable. Then G is almost n-simply presented if and only if G / N is almost n-simply presented.

Proof. The necessity follows from Corollary 2.19 , so that we concentrate on the sufficiency. To that aim, observe with the aid of Proposition 2.8 that

$$
G / N / p^{\omega}(G / N) \cong G /\left(p^{\omega} G+N\right) \cong G / p^{\omega} G /\left(p^{\omega} G+K\right) / p^{\omega} G
$$

is almost $p^{\omega+n}$-projective. Since $\left(p^{\omega} G+K\right) / p^{\omega} G \cong K /\left(K \cap p^{\omega} G\right)$ is countable (and nice in $G / p^{\omega} G$), it follows from Proposition 2.10 of [3] that $G / p^{\omega} G$ is almost $p^{\omega+n}$-projective too. Thus G is (nicely) almost $\omega_{1}-p^{\omega+n}$-projective, and hence Theorem 2.13 works.

As a valuable consequence, we derive:
Corollary 2.26. Suppose K is a countable subgroup of G. If G / K is separable almost n-simply presented, then G is almost n-simply presented.

Proof. Since $p^{\omega} G \subseteq K$ is obviously countable and K is nice in G, Proposition 2.25 is applicable to infer the statement.

Remark 3. The last statement improves Corollary 5.4 from [14] to almost simply presented groups.

It is obvious that the arbitrary direct sum of (nicely) almost n-simply presented groups is again (nicely) almost n-simply presented. So, we finish with the exploration of the direct summand problem for (nicely) almost n-simply presented groups (see [15] as well).

Proposition 2.27. Let $A=B \oplus C$ be a group for some subgroups B and C. If
(1) A is almost n-simply presented such that C is countable, then B is almost n-simply presented.
(2) A is nicely almost n-simply presented such that $p^{\omega+n} C=\{0\}$, then B is nicely almost n-simply presented.

Proof. (1) Clearly, using Corollary 2.19, we deduce that $B \cong A / C$ is almost n-simply presented.
(2) Referring to Theorem 2.7 (b), $p^{\omega+n} B=p^{\omega+n} A$ is almost n-simply presented. Moreover, $A / p^{\omega+n} A \cong\left(B / p^{\omega+n} B\right) \oplus C$, where in virtue of Theorem 2.7 accomplished with Proposition 2.6 we have that $A / p^{\omega+n} A$ is almost $p^{\omega+n}$-projective. Now, appealing to [3], so is $B / p^{\omega+n} B$ as being a subgroup. Finally, Theorem 2.10 is a guarantor that B is nicely almost n-simply presented.

3. Concluding Discussion and Open Problems

We were unable to prove that if A is a group such that $p^{\omega+n} A=$ $\{0\}$ and $A / p^{\omega} A$ is almost $p^{\omega+n}$-projective, then A is almost n-simply presented, and vice versa. The crucial moment is to show (if possible) that if A is a group with a subgroup H such that A / H is almost Σ-cyclic and $p^{n} H \subseteq p^{\omega} A \subseteq A\left[p^{n}\right]$, then $A / p^{n} H$ is almost simply presented, and as a consequence A will be almost n-simply presented.

If these are true, then

$$
A / p^{\omega} A \cong A / p^{\omega+n} A / p^{\omega} A / p^{\omega+n} A=A / p^{\omega+n} A / p^{\omega}\left(A / p^{\omega+n} A\right)
$$

being almost n-simply presented will imply that $A / p^{\omega+n} A$ is also almost n-simply presented. Moreover, if $p^{\omega} A$ is bounded, then so will be $p^{\omega+n} A$ according to Lemma 2.3, and hence owing to Theorem 2.10 the next statement will be fulfilled.

Conjecture 1. Suppose A is a group such that both $p^{\omega} A$ and $A / p^{\omega} A$ are almost $p^{\omega+n}$-projective. Then A is almost n-simply presented.

The last can slightly be improved to the following.
Conjecture 2. Suppose G is a group of length λ strictly less than ω^{2}. Then G is almost n-simply presented if and only if, for every nonnegative integer $m, p^{\omega \cdot m} G / p^{\omega \cdot(m+1)} G$ is almost $p^{\omega+n}$-projective.

Idea for proof. " \Rightarrow ". Referring to Theorem 2.7 (a), $G / p^{\omega \cdot(m+1)} G$ is also almost n-simply presented. Hence again applying Theorem 2.7 (a), we deduce that $p^{\omega \cdot m}\left(G / p^{\omega \cdot(m+1)} G\right)=p^{\omega \cdot m} G / p^{\omega \cdot(m+1)} G$ is almost n simply presented too. Since $p^{\omega \cdot m} G / p^{\omega \cdot(m+1)} G$ is obviously p^{ω}-bounded, Proposition 2.5 applies to infer that this quotient is actually almost $p^{\omega+n}$-projective.
$" \Leftarrow "$. For $m=0$ we have that $G / p^{\omega} G$ is almost $p^{\omega+n}$-projective. When $m=1$ we obtain that $p^{\omega} G / p^{\omega \cdot 2} G=p^{\omega}\left(G / p^{\omega \cdot 2} G\right)$ is almost $p^{\omega+n_{-}}$ projective. However, $G / p^{\omega} G \cong G / p^{\omega \cdot 2} G / p^{\omega} G / p^{\omega \cdot 2} G=G / p^{\omega \cdot 2} G / p^{\omega}$ $\left(G / p^{\omega \cdot 2} G\right)$ is almost $p^{\omega+n}$-projective. Consequently, Conjecture 1 is applicable to get that $G / p^{\omega \cdot 2} G$ is almost n-simply presented. Hence, Theorem 2.7 (a) gives that $p^{\omega}\left(G / p^{\omega \cdot 2} G\right)=p^{\omega} G / p^{\omega \cdot 2} G \cong p^{\omega} G / p^{\omega \cdot 3} G / p^{\omega \cdot 2}$ $G / p^{\omega \cdot 3} G=p^{\omega} G / p^{\omega \cdot 3} G / p^{\omega}\left(p^{\omega} G / p^{\omega \cdot 3} G\right)$. But by hypothesis $p^{\omega \cdot 2} G / p^{\omega \cdot 3} G$ $=p^{\omega}\left(p^{\omega} G / p^{\omega \cdot 3} G\right)$ is almost $p^{\omega+n}$-projective. Now Conjecture 1 implies that $p^{\omega} G / p^{\omega \cdot 3} G$ is almost n-simply presented. Moreover, $G / p^{\omega} G \cong$ $G / p^{\omega \cdot 3} G / p^{\omega}\left(G / p^{\omega \cdot 3} G\right)$ is almost $p^{\omega+n}$-projective. Therefore, again Conjecture 1 forces that $G / p^{\omega \cdot 3} G$ is almost n-simply presented, etc. after final steps to $G / p^{\lambda} G \cong G$ is almost n-simply presented, as wanted.

In closing, we shall state some left-open problems that still elude us.
Problem 1. Let G be a group such that $P \leq G$ is almost simply presented and G / P is almost Σ-cyclic. What we can say about the structure of G ?

Problem 2. Let G be a group such that $P \leq G$ is almost \sum-cyclic and G / P is almost simply presented. What we can say about the structure of G ?

Problem 3. Describe the structure of (nicely) almost $\omega_{1}-n$-simply presented groups that are groups G for which there exist countable (nice) subgroups C such that G / C are almost n-simply presented.

For papers related to the last question the reader may see [3] and [4].
Problem 4. For groups A and B decide when $\operatorname{Tor}(A, B)$ is almost n simply presented (in particular, almost $p^{\omega+n}$-projective) whenever $n \geq 0$.
Acknowledgement. The author owes his sincere thanks to the referee for the remarks made which helped to improve the presentation of the article.

References

[1] B. Balof and P. Keef, Invariants on primary abelian groups and a problem of Nunke, Note Mat. 29 (2) (2009), 83-114.
[2] P. Danchev, On extensions of primary almost totally projective groups, Math. Bohemica 133 (2) (2008), 149-155.
[3] P. Danchev, On almost $\omega_{1}-p^{\omega+n}$-projective abelian p-groups, accepted.
[4] P. Danchev, On ω_{1}-n-simply presented abelian p-groups, submitted.
[5] P. Danchev and P. Keef, Generalized Wallace theorems, Math. Scand. 104 (1) (2009), 33-50.
[6] P. Danchev and P. Keef, Nice elongations of primary abelian groups, Publ. Mat. 54 (2) (2010), 317-339.
[7] P. Danchev and P. Keef, An application of set theory to $\omega+n$-totally $p^{\omega+n}$ projective primary abelian groups, Mediterr. J. Math. (4) 8 (2011), 525-542.
[8] L. Fuchs, Infinite Abelian Groups, volumes I and II, Acad. Press, New York and London, 1970 and 1973.
[9] P. Griffith, Infinite Abelian Group Theory, The University of Chicago Press, Chicago-London, 1970.
[10] P. Hill, Almost coproducts of finite cyclic groups, Comment. Math. Univ. Carolin. 36 (4) (1995), 795-804.
[11] P. Hill and W. Ullery, Isotype separable subgroups of totally projective groups, Abelian Groups and Modules, Proc. Padova Conf., Padova 1994, Kluwer Acad. Publ. 343 (1995), 291-300.
[12] P. Hill and W. Ullery, Almost totally projective groups, Czechoslovak Math. J. 46 (2) (1996), 249-258.
[13] P. Keef, On $\omega_{1}-p^{\omega+n}$-projective primary abelian groups, J. Algebra Numb. Th. Acad. 1 (1) (2010), 41-75.
[14] P. Keef and P. Danchev, On n-simply presented primary abelian groups, Houston J. Math. 38 (4) (2012), 1027-1050.
[15] P. Keef and P. Danchev, On m, n-balanced projective and m, n-totally pojective primary abelian groups, J. Korean Math. Soc. 50 (2) (2013), 307-330.

Department of Mathematics, Plovdiv University "P. Hilendarski", Plovdiv 4000, Bulgaria E-mail: pvdanchev@yahoo.com

[^0]: Received August 10, 2013. Revised November 28, 2013. Accepted November 28, 2013.

 2010 Mathematics Subject Classification: 20K10.
 Key words and phrases: abelian p-primary groups, almost Σ-cyclic groups, almost $p^{\omega+n}$-projective groups, almost n-simply presented groups.
 (c) The Kangwon-Kyungki Mathematical Society, 2013.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

