Korean J. Math. **21** (2013), No. 4, pp. 401–419 http://dx.doi.org/10.11568/kjm.2013.21.4.401

ON ALMOST *n*-SIMPLY PRESENTED ABELIAN *p*-GROUPS

Peter V. Danchev

ABSTRACT. Let $n \geq 0$ be an arbitrary integer. We define the class of almost n-simply presented abelian p-groups. It naturally strengthens all the notions of almost simply presented groups introduced by Hill and Ullery in Czechoslovak Math. J. (1996), n-simply presented p-groups defined by the present author and Keef in Houston J. Math. (2012), and almost ω_1 - $p^{\omega+n}$ -projective groups developed by the same author in an upcoming publication [3]. Some comprehensive characterizations of the new concept are established such as Nunke-esque results as well as results on direct summands and ω_1 -bijections.

1. Introduction and Backgrounds

Throughout the current paper, we assume that p is a fixed prime integer and all groups into consideration are additive p-torsion abelian. All crucial notions and notations will follow those from [8] and [9]; the new ones will be explained in the sequel. For instance,

$$G[p^n] = \{ g \in G : p^n g = 0, n \in \mathbb{N} \},\$$

is said to be the p^n -socle of G that plays a significant role in our further investigation.

Received August 10, 2013. Revised November 28, 2013. Accepted November 28, 2013.

²⁰¹⁰ Mathematics Subject Classification: 20K10.

Key words and phrases: abelian *p*-primary groups, almost Σ -cyclic groups, almost $p^{\omega+n}$ -projective groups, almost *n*-simply presented groups.

[©] The Kangwon-Kyungki Mathematical Society, 2013.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Likewise, for any $i \in \mathbb{N}$, we have

 $p^i G = \{ p^i g : g \in G \}$

which is called the p^i -power subgroup of G. Set $p^{\omega}G = \bigcap_{i < \omega} p^i G$, called first Ulm subgroup, and we will say that G is separable if $p^{\omega}G = \{0\}$. By analogy, for every ordinal α , one can define $p^{\alpha}G$ as follows: $p^{\alpha}G = p(p^{\alpha-1}G)$ if α is non-limit, or $p^{\alpha}G = \bigcap_{\beta < \alpha} p^{\beta}G$ otherwise. A subgroup N of a group G is said to be nice if, for any ordinal α , the equality $p^{\alpha}(G/N) = (p^{\alpha}G + N)/N$ is fulfilled.

In their seminal works [11] and [12], Hill and Ullery have given the following critical

DEFINITION 1. The reduced group G is called *almost totally projective* if it has a collection C consisting of nice subgroups of G satisfying the following three conditions:

 $(1) \{0\} \in \mathcal{C};$

(2) C is closed with respect to ascending unions, i.e., if $H_i \in C$ with $H_i \subseteq H_j$ whenever $i \leq j$ $(i, j \in I)$ then $\bigcup_{i \in I} H_i \in C$;

(3) If K is a countable subgroup of G, then there is $L \in \mathcal{C}$ (that is, a nice subgroup L of G) such that $K \subseteq L$ and L is countable.

This concept generalizes the notion of *almost* Σ -*cyclic* groups defined in [10]. Actually separable almost totally projective groups are almost Σ -cyclic.

Moreover, the direct sum of a divisible group and an almost totally projective group was called *almost simply presented*.

Paralleling, the current author defines in [3] the following:

DEFINITION 2. The group G is said to be almost $p^{\omega+n}$ -projective if there is $B \leq G[p^n]$ such that G/B is almost Σ -cyclic.

In addition, if there exists a countable subgroup $C \leq G$ with the property that G/C is almost $p^{\omega+n}$ -projective, then we will say that G is almost $\omega_1 \cdot p^{\omega+n}$ -projective.

On the other hand, in [14] was formulated the following:

DEFINITION 3. The group G is called *n*-simply presented if there exists $P \leq G[p^n]$ with the property that G/P is simply presented.

This is a natural enlargement of $p^{\omega+n}$ -projectives, so that it seems that we can use this idea to refine the statement of Definition 2.

And so, the goal of this article is to combine Definitions 1 and 3 into the following extension of Definition 2.

DEFINITION 4. The group G is said to be almost n-simply presented if there is $H \leq G[p^n]$ such that G/H is almost simply presented.

If G/H is almost totally projective, then we will say that G is almost *n*-totally projective.

In case that H is nice in G, we give

DEFINITION 5. The group G is called *nicely almost n-simply presented* (resp. *nicely almost n-totally projective*) if there exists a p^n -bounded nice subgroup $N \leq G$ with G/N almost simply presented (resp. almost totally projective).

In terms of [14] these groups could be named strongly almost n-simply presented and strongly almost n-totally projective.

Apparently almost $p^{\omega+n}$ -projectives are nicely almost *n*-totally projective. Since almost simply presented groups of cardinality at most \aleph_1 are simply presented (see [12]), it is easy to see that almost *n*-simply presented groups of cardinality not exceeding \aleph_1 are *n*-simply presented, a class of groups which was comprehensively developed in [14]. Thus to avoid any duplication and triviality of the results, our almost *n*-simply presented groups will be of cardinalities at least \aleph_2 since in [12] was showed that there is an almost simply presented group of cardinality \aleph_2 that is not simply presented.

Our main achievements will be proved in details in the next section.

2. Basic Results

We start here with three technicalities.

LEMMA 2.1. Suppose A is a group with a subgroup B such that A/B is bounded, and suppose $A \leq G$ for some group G. The following two conditions hold:

(a) If N is nice in B, then N is nice in A.

(b) If M is nice in A, then $M \cap B$ is nice in B.

Proof. (a) Let $p^t A \subseteq B$ for some $t \in \mathbb{N}$. Since $p^{\omega} A = p^{\omega} B$, and hence $p^{\lambda} A = p^{\lambda} B$ for each $\lambda \geq \omega$, we need show only that $\bigcap_{k < \omega} (N + p^k A) = N + p^{\omega} A$. In fact, $\bigcap_{k < \omega} (N + p^k A) = \bigcap_{t \leq k < \omega} (N + p^k A) \subseteq \bigcap_{i < \omega} (N + p^i B) = N + p^{\omega} B = N + p^{\omega} A$, as required.

(b) For every limit ordinal β we have with the aid of the modular law that $\bigcap_{\alpha < \beta} (M \cap B + p^{\alpha}B) \subseteq \bigcap_{\alpha < \beta} (M + p^{\alpha}A) \cap B = (M + p^{\beta}A) \cap B = (M + p^{\beta}B) \cap B = M \cap B + p^{\beta}B$, as required.

LEMMA 2.2. Let λ be an ordinal, k a positive integer, and G a group with a subgroup P. If $P \cap p^{\lambda+k}G$ is nice in $p^{\lambda+k}G$, then $P \cap p^{\lambda}G$ is nice in $p^{\lambda}G$.

Proof. For each limit ordinal β we write

$$\bigcap_{\alpha < \beta} (P \cap p^{\lambda + k} G + p^{\lambda + k + \alpha} G) = P \cap p^{\lambda + k} G + p^{\lambda + k + \beta} G = P \cap p^{\lambda + k} G + p^{\lambda + \beta} G.$$

We shall consider two cases about β .

Case 1: $\beta \ge \omega \cdot 2$. Then α can be chosen to be $\ge \omega$. Hence we have $\bigcap_{\alpha < \beta} (P \cap p^{\lambda + k}G + p^{\lambda + \alpha}G) = P \cap p^{\lambda + k}G + p^{\lambda + \beta}G.$

Summarizing in both sides the intersection $P \cap p^{\lambda}G$, we derive that

$$\cap_{\alpha < \beta} (P \cap p^{\lambda + k}G + p^{\lambda + \alpha}G) + P \cap p^{\lambda}G = P \cap p^{\lambda}G + p^{\lambda + \beta}G.$$

But

$$\cap_{\alpha<\beta}(P\cap p^{\lambda+k}G+p^{\lambda+\alpha}G)+P\cap p^{\lambda}G=\cap_{\alpha<\beta}(P\cap p^{\lambda}G+p^{\lambda+\alpha}G).$$

In fact, the left inclusion " \subseteq " is self-evident, so that we consider the right one " \supseteq ". To that aim, given $x \in \bigcap_{\alpha < \beta} (P \cap p^{\lambda}G + p^{\lambda+\alpha}G)$, whence $x = a_1 + b_{1\alpha} = \cdots = c_1 + b_{1\tau} = \cdots$ where $a_1, c_1 \in P \cap p^{\lambda}G$ and $b_{1\alpha} \in p^{\lambda+\alpha}G$, $b_{1\tau} \in p^{\lambda+\tau}G$ for some arbitrary ordinal τ such that $\alpha < \tau < \beta$. Observe that $b_{1\alpha} - b_{1\tau} = c_1 - a_1 \in p^{\lambda+k}G \cap (P \cap p^{\lambda}G) = P \cap p^{\lambda+k}G$ because $\alpha > k$. Thus $b_{1\alpha} \in P \cap p^{\lambda+k}G + p^{\lambda+\tau}G$ for every τ , which means that $b_{1\alpha} \in \bigcap_{\alpha < \beta} (P \cap p^{\lambda+k}G + p^{\lambda+\alpha}G)$. Finally, $x \in P \cap p^{\lambda}G + \bigcap_{\alpha < \beta} (P \cap p^{\lambda+k}G + p^{\lambda+\alpha}G)$, as wanted. The obtained equality gives that $\bigcap_{\alpha < \beta} (P \cap p^{\lambda}G + p^{\lambda+\alpha}G) = P \cap p^{\lambda}G + p^{\lambda+\beta}G$, as required.

Case 2: $\beta = \omega$. Therefore, α is natural, and we write

$$\cap_{\alpha < \beta} (P \cap p^{\lambda + k}G + p^{\lambda + k + \alpha}G) = P \cap p^{\lambda + k}G + p^{\lambda + \beta}G.$$

However, we can choose these α such that $\alpha=i-k$ with $i\geq k+1$ and hence

$$\bigcap_{1 < \omega} (P \cap p^{\lambda + k}G + p^{\lambda + i}G) = P \cap p^{\lambda + k}G + p^{\lambda + \omega}G.$$

Again as above adding $P\cap p^\lambda G$ in both sides of the last identity, we deduce as before that

$$\bigcap_{1 < \omega} (P \cap p^{\lambda}G + p^{\lambda + i}G) = P \cap p^{\lambda}G + p^{\lambda + \omega}G,$$

as desired.

LEMMA 2.3. Let A be a group with a subgroup B such that A/B is bounded. Then

(i) A is almost Σ -cyclic if and only if B is almost Σ -cyclic.

(ii) A is almost simply presented if and only if B is almost simply presented.

(iii) A is (nicely) almost n-simply presented if and only if B is (nicely) almost n-simply presented.

Proof. (i) The necessity follows immediately from [1].

Concerning the sufficiency, since $p^m A \subseteq B$ for some $m \in \mathbb{N}$, again [1] allows us to deduce that $p^m A$ is almost Σ -cyclic. We henceforth appeal to [12] to obtain that the same is A, as asserted.

(ii) Since $p^m A \subseteq B$ for some $m \in \mathbb{N}$, it readily follows that $p^{\omega} A = p^{\omega} B$. Moreover, $B/p^{\omega} B \subseteq A/p^{\omega} A$.

To prove the necessity, utilizing [12], $A/p^{\omega}A$ is almost Σ -cyclic, and thus [1] can be applied to get that so is $B/p^{\omega}B$. Besides, again [12] tells us that $p^{\omega}B = p^{\omega}A$ remains almost simply presented, so that a new third application of [12] guarantees that B must be almost simply presented.

Conversely, to show the sufficiency, as above $p^{\omega}A = p^{\omega}B$ and $B/p^{\omega}B$ are almost simply presented. Moreover, since $A/p^{\omega}A/B/p^{\omega}B \cong A/B$ is bounded, point (i) implies that $A/p^{\omega}A$ is almost simply presented. Finally, [12] again insures that A is almost simply presented, as formulated.

(iii) To prove the necessity, let A/P is almost simply presented for some $P \leq A[p^n]$. But $A/P/(B+P)/P \cong A/(B+P) \cong A/B/(B+P)/B$ is bounded, so that point (ii) forces that $(B+P)/P \cong B/(B \cap P)$ is almost simply presented. And finally, since $P \cap B$ is contained in $B[p^n]$, the claim follows.

To show now the sufficiency, assume that B/P is almost simply presented for some $P \leq A[p^n]$. Since $A/P/B/P \cong A/B$ is bounded, point (ii) gives that A/P is almost simply presented, as required.

The nicely part follows by applying Lemma 2.1.

LEMMA 2.4. Suppose that A is a group such that $p^{\lambda}A$ is bounded for some ordinal λ , and suppose $Y \subseteq p^{\lambda}A$. Then A is almost simply presented if and only if A/Y is almost simply presented.

Proof. Since

$$A/p^{\lambda}A \cong A/Y/p^{\lambda}A/Y = A/Y/p^{\lambda}(A/Y),$$

405

we apply a result from [12] which says that A is almost simply presented if and only if $A/p^{\lambda}A$ is almost simply presented. Again employing the same assertion to A/Y, we are finished.

We continue with the consideration of the separable case.

PROPOSITION 2.5. If G is a separable almost n-simply presented group, then G is almost $p^{\omega+n}$ -projective.

Proof. Let G/H be almost simply presented for some $H \leq G$ with $p^n H = \{0\}$. Exploiting [11], $G/H/p^{\omega}(G/H) \cong G/ \cap_{i < \omega} (p^i G + H)$ is almost Σ -cyclic. But $p^n(\cap_{i < \omega} (p^i G + H)) = p^{\omega} G = \{0\}$, as required. \Box

For $p^{\omega+n}$ -bounded groups, we can obtain even more:

PROPOSITION 2.6. Suppose G is a group such that $p^{\omega+n}G = \{0\}$. If G is nicely almost n-simply presented, then G is almost $p^{\omega+n}$ -projective.

Proof. Assume that G/N is almost simply presented for some nice subgroup $N \leq G$ such that $p^n N = \{0\}$. Again in virtue of [12], the quotient $G/N/p^{\omega}(G/N) \cong G/(p^{\omega}G+N)$ is almost Σ -cyclic. However, $p^n(p^{\omega}G+N) = \{0\}$, and even $p^{\omega}G+N$ remains nice in G, as needed. \Box

We will now explore whether or not Ulm subgroups and Ulm factors reserve the property of being (nicely) almost n-simply presented provided that the full group possesses it, as well as having such a property they imply it on the whole group.

THEOREM 2.7. (a) Suppose that G is almost n-simply presented. Then, for any ordinal λ , both $p^{\lambda}G$ and $G/p^{\lambda}G$ are almost n-simply presented.

(b) Suppose that G is nicely almost n-simply presented. Then, for any ordinal λ , both $p^{\lambda}G$ and $G/p^{\lambda}G$ are nicely almost n-simply presented.

Proof. (a) Assume that G/H is almost simply presented for some $H \leq G[p^n]$. By [12] $p^{\lambda+n}(G/H)$ remains almost simply presented, and moreover

$$p^{\lambda+n}(G/H)/(p^{\lambda+n}G+H)/H \cong X/(p^{\lambda+n}G+H)$$

where $X \leq G$ with $X/H = p^{\lambda+n}(G/H)$. But $p^n X \subseteq p^{\lambda+n}G + H$, so that the right hand-side is bounded by p^n . Thus Lemma 2.3 applies to get that $(p^{\lambda+n}G + H)/H$ is almost simply presented. However, the quotient $(p^{\lambda}G + H)/H/(p^{\lambda+n}G + H)/H \cong (p^{\lambda}G + H)/(p^{\lambda+n}G + H)$ is also p^n bounded, so that again Lemma 2.3 works to infer that $(p^{\lambda}G + H)/H \cong$

 $p^{\lambda}G/(p^{\lambda}G\cap H)$ is almost simply presented. Since $p^{\lambda}G\cap H \leq (p^{\lambda}G)[p^n]$, we are done with the first part.

Now dealing with the second half, we first observe that

$$G/p^{\lambda}G/(p^{\lambda}G+H)/p^{\lambda}G \cong G/(p^{\lambda}G+H) \cong G/H/(p^{\lambda}G+H)/H,$$

where $(p^{\lambda}G + H)/p^{\lambda}G \cong H/(H \cap p^{\lambda}G$ is p^{n} -bounded. But

$$G/H/p^{\lambda+n}(G/H)/(p^{\lambda}G+H)/H/p^{\lambda+n}(G/H)$$

$$\cong G/H/(p^{\lambda}G+H)/H \cong G/(p^{\lambda}G+H)$$

and $(p^{\lambda}G + H)/H/p^{\lambda+n}(G/H) \subseteq p^{\lambda}(G/H/p^{\lambda+n}(G/H))$ is p^{n} -bounded, hence Lemma 2.4 is applicable to conclude that $G/p^{\lambda}G$ is almost *n*-simply presented, as stated.

(b) Let us assume that G/N is almost simply presented for some nice $N \leq G$ with $p^n N = \{0\}$. Since $p^{\lambda}(G/N) = (p^{\lambda}G + N)/N \cong$ $p^{\lambda}G/(p^{\lambda}G \cap N)$ is also almost simply presented and $p^{\lambda}G \cap N$ is nice in $p^{\lambda}G$ such that $p^n(p^{\lambda}G \cap N) = \{0\}$, we conclude that $p^{\lambda}G$ is nicely almost *n*-simply presented too.

Moreover,

$$G/p^{\lambda}G/(N+p^{\lambda}G)/p^{\lambda}G \cong G/(N+p^{\lambda}G)$$
$$\cong G/N/(N+p^{\lambda}G)/N = G/N/p^{\lambda}(G/N)$$

must be almost simply presented. However, $N + p^{\lambda}G$ remains nice in G, so that $(N + p^{\lambda}G)/p^{\lambda}G$ is so in $G/p^{\lambda}G$. Since $(N + p^{\lambda}G)/p^{\lambda}G \cong N/(N \cap p^{\lambda}G)$ is obviously p^{n} -bounded, the result follows. \Box

As a useful consequence, we yield:

COROLLARY 2.8. If G is an almost n-simply presented group, then $G/p^{\omega}G$ is almost $p^{\omega+n}$ -projective.

Proof. Follows by a combination of Theorem 2.7 (a) applied to $\lambda = \omega$, along with Proposition 2.5.

Under some extra circumstances the reverse also holds:

PROPOSITION 2.9. Suppose G is a group whose $G/p^{\lambda}G$ is n-simply presented for some ordinal λ . Then G is almost n-simply presented if and only if $p^{\lambda}G$ is almost n-simply presented.

Proof. The "and only if" part follows from Theorem 2.7(a). As for the "if" part, since

$$G/p^{\lambda}G \cong G/p^{\lambda+n}G/p^{\lambda}G/p^{\lambda+n}G = G/p^{\lambda+n}G/p^{\lambda}(G/p^{\lambda+n}G)$$

is *n*-simply presented, where $p^{\lambda}(G/p^{\lambda+n}G)$ is clearly p^{n} -bounded, we take into account Theorem 4.5 from [14] to establish that $G/p^{\lambda+n}G$ is *n*-simply presented.

On the other hand, Lemma 2.3 (iii) ensures that $p^{\lambda+n}G$ is almost *n*-simply presented because the factor-group $p^{\lambda}G/p^{\lambda+n}G$ is obviously bounded (by p^n). So, Theorem 2.10 presented below yields the wanted claim.

For ordinals α of the special type $\lambda + n$ for some arbitrary ordinal λ , the last achievement can be somewhat strengthened to the following one:

THEOREM 2.10. Let G be a group, λ an ordinal and n a positive integer. Then G is (nicely) almost n-simply presented if and only if $p^{\lambda+n}G$ and $G/p^{\lambda+n}G$ are both (nicely) almost n-simply presented.

Proof. The implication " \Rightarrow " follows by a direct application of Theorem 2.7.

For the implication " \Leftarrow ", let $P_1 \leq G$ contain $p^{\lambda+n}G$ such that $G/P_1 \cong G/p^{\lambda+n}G/P_1/p^{\lambda+n}G$ is almost simply presented and $p^nP_1 \subseteq p^{\lambda+n}G$.

Suppose Y is a maximal p^n -bounded summand of $p^{\lambda}G$, so that the decomposition $p^{\lambda}G = X \oplus Y$ holds. Observe that $p^{\lambda+n}G = p^nX$, so that $Y \cap p^{\lambda+n}G = \{0\}$. Let H be a $p^{\lambda+n}$ -high subgroup of G containing Y. One easily sees that $(p^{\lambda+n}G)[p] = X[p]$, so that $H \cap X = \{0\}$. Moreover, since $G[p] = (p^{\lambda+n}G)[p] \oplus H[p] = X[p] \oplus H[p]$ and since H is pure in G (see, e.g., [8]), it is readily checked that $G[p^n] = X[p^n] \oplus H[p^n]$.

We next claim that

$$(G/p^{\lambda+n}G)[p^n] = (X \oplus H[p^n])/p^{\lambda+n}G.$$

To verify this, since the right hand-side is obviously contained in the left one, choose $x \in G$ with $p^n x \in p^{\lambda+n}G$. Thus $p^n x \in p^n X$ and hence $x \in X + G[p^n] = X \oplus H[p^n]$, as required.

By what we have shown above, $P_1 \subseteq X \oplus H[p^n]$. Setting $P_2 = (P_1 + X) \cap H[p^n]$, we derive with the modular law at hand that

$$X + P_1 = (X + P_1) \cap (X \oplus H[p^n]) = X + (X + P_1) \cap H[p^n] = X + P_2.$$

Consequently, by adding on both sides $p^{\lambda}G$, we have that $P_1 + p^{\lambda}G = P_2 + p^{\lambda}G$.

On the other hand, let $p^{\lambda+n}G/P_3 = p^{\lambda+n}(G/P_3)$ be almost simply presented such that $p^nP_3 = \{0\}$. Letting $P = P_2 + P_3$, we observe that $P \leq G[p^n]$, that $p^{\lambda+n}G \cap P = P_3$ and that $p^{\lambda}G + P = p^{\lambda}G + P_2 = p^{\lambda}G + P_1$.

Hence $p^{\lambda+n}G/(p^{\lambda+n}G\cap P) \cong (p^{\lambda+n}G+P)/P$ is almost simply presented. Since $(p^{\lambda}G+P)/(p^{\lambda+n}G+P)$ is clearly bounded by p^n , it therefore follows from Lemma 2.3 (ii) that $(p^{\lambda}G+P)/P \cong p^{\lambda}G/(p^{\lambda}G\cap P)$ is almost simply presented. And since $p^{\lambda}(G/P)/(p^{\lambda}G+P)/P$ is bounded by p^n because $p^{\lambda+n}(G/P) \subseteq (p^{\lambda}G+P)/P$, we once again refer to Lemma 2.3 to get that $p^{\lambda}(G/P)$ is almost simply presented.

Furthermore, Lemma 2.4 is in use to show that

$$G/(p^{\lambda}G + P) = G/(p^{\lambda}G + P_1) \cong G/P_1/(p^{\lambda}G + P_1)/P_1$$

is almost simply presented, because $(p^{\lambda}G + P_1)/P_1 \subseteq p^{\lambda}(G/P_1)$ and the latter is bounded by p^{2n} since $p^n(P_1/p^{\lambda+n}G) = \{0\}$ and $G/P_1 \cong G/p^{\lambda+n}G/P_1/p^{\lambda+n}G$. So, we further have that

$$G/(p^{\lambda}G+P) \cong G/P/(p^{\lambda}G+P)/P$$

is almost simply presented, and so [12] enables us that

$$G/P/p^{\lambda}(G/P) \cong G/P/(p^{\lambda}G+P)/P/p^{\lambda}(G/P)/(p^{\lambda}G+P)/P$$

= $G/P/(p^{\lambda}G+P)/P/p^{\lambda}(G/P/(p^{\lambda}G+P)/P)$

is also almost simply presented, which again by [12] means that G/P is almost simply presented, as wanted.

The "nicely" part follows like this: By definition we assume that $P_1/p^{\lambda+n}G$ is nice in $G/p^{\lambda+n}G$ whence, with the help of [8], the subgroup P_1 should be nice in G. Likewise, by definition P_3 is nice in $p^{\lambda+n}G$ and hence in G (see [8] too). We claim that P is nice in G as well. In fact, P_1 being nice in G plainly implies that $P_1 + p^{\lambda}G = P + p^{\lambda}G$ is nice in G. On the other hand, by what we have shown above, $p^{\lambda+n}G \cap P = P_3$ is nice in G. Now Lemma 2.2 works to infer that $p^{\lambda}G \cap P$ is nice in G, we finally appeal once again to [8] to conclude that P has to be nice in G, indeed, as asserted.

As an interesting consequence, we deduce:

COROLLARY 2.11. Let G be a group and λ an ordinal such that $G/p^{\lambda}G$ is almost simply presented. Then G is (nicely) almost n-simply presented if and only if $p^{\lambda}G$ is (nicely) almost n-simply presented.

Proof. The necessity follows directly from Theorem 2.7, so that we now concentrate on the sufficiency. To that end, we claim that $p^{\lambda+n}G$ is (nicely) almost *n*-simply presented and claim that $G/p^{\lambda+n}G$ is almost simply presented, whence Theorem 2.10 will work. In fact, since

 $p^{\lambda}G/p^{\lambda+n}G$ is bounded by p^n , Lemma 2.3 (iii) tells us that our first claim is true. As for the second one,

$$G/p^{\lambda}G \cong G/p^{\lambda+n}G/p^{\lambda}G/p^{\lambda+n}G = G/p^{\lambda+n}G/p^{\lambda}(G/p^{\lambda+n}G),$$

is almost simply presented, where $p^{\lambda}(G/p^{\lambda+n}G)$ is clearly p^{n} -bounded, and hence [12] enables us that $G/p^{\lambda+n}G$ is almost simply presented, indeed, as claimed.

PROPOSITION 2.12. Suppose G is a group of length λ strictly less than ω^2 . Then G is nicely almost n-simply presented if and only if, for each non-negative integer m, $p^{\omega \cdot m+n}G/p^{\omega \cdot (m+1)+n}G$ is almost $p^{\omega+n}$ -projective.

Proof. " \Rightarrow ". From Theorem 2.7 (b), $G/p^{\omega \cdot (m+1)+n}G$ is also nicely almost *n*-simply presented. Henceforth, we once again appeal to Theorem 2.7 (b) to get that $p^{\omega \cdot m+n}(G/p^{\omega \cdot (m+1)+n}G) = p^{\omega \cdot m+n}G/p^{\omega \cdot (m+1)+n}G$ is nicely almost *n*-simply presented too. But $p^{\omega \cdot m+n}G/p^{\omega \cdot (m+1)+n}G$ is obviously $p^{\omega+n}$ -bounded, whence Proposition 2.6 assures that this quotient is actually almost $p^{\omega+n}$ -projective.

"⇐". For m = 0 we have that $p^n G/p^{\omega+n}G = p^n(G/p^{\omega+n}G)$ is almost $p^{\omega+n}$ -projective, so that the same holds for $G/p^{\omega+n}G$. When m = 1 we obtain that $p^{\omega+n}G/p^{\omega\cdot 2+n}G = p^{\omega+n}(G/p^{\omega\cdot 2+n}G)$ is almost $p^{\omega+n}$ -projective. But $G/p^{\omega+n}G \cong G/p^{\omega\cdot 2+n}G/p^{\omega+n}G/p^{\omega\cdot 2+n}G = G/p^{\omega\cdot 2+n}G/p^{\omega+n}(G/p^{\omega\cdot 2+n}G)$ is almost $p^{\omega+n}$ -projective. Therefore, Theorem 2.10 works to get that $G/p^{\omega\cdot 2+n}G$ is nicely almost *n*-simply presented, etc. after final steps to $G/p^{\lambda}G \cong G$ is nicely almost *n*-simply presented. \Box

For groups with countable first Ulm subgroup, the situation is the following:

THEOREM 2.13. Suppose G is a group whose $p^{\omega}G$ is countable. Then G is almost n-simply presented if and only if G is almost ω_1 - $p^{\omega+n}$ -projective.

Proof. Firstly, note that in [3] was established that G is almost ω_1 - $p^{\omega+n}$ -projective exactly when $G/p^{\omega}G$ is almost $p^{\omega+n}$ -projective, provided $p^{\omega}G$ is countable. Thus our claim restricts to that proving that G is almost *n*-simply presented precisely when $G/p^{\omega}G$ is almost $p^{\omega+n}$ -projective.

The implication " \Rightarrow " now follows by a simple combination of Corollary 2.8 and Definition 2.

As for the implication " \Leftarrow ", $G/p^{\omega}G$ being almost $p^{\omega+n}$ -projective forces that $G/p^{\omega}G/A/p^{\omega}G \cong G/A$ is almost Σ -cyclic for some $A \leq G$

such that $p^n A \subseteq p^{\omega} G$. Therefore, $A = K \oplus P$ where K is countable and P is p^n -bounded. Hence $G/A \cong G/P/A/P$ where $A/P \cong K$ is countable. Using [3], G/P must be almost simply presented, as expected. \Box

REMARK 1. The last assertion extends Proposition 2.5. It is also a strengthening of the fact that G is *n*-simply presented uniquely when G is $\omega_1 p^{\omega+n}$ -projective whenever $p^{\omega}G$ is countable.

In that aspect we can strengthen Proposition 2.6 to the following one:

THEOREM 2.14. Let G be a group for which $p^{\omega+n}G$ is countable. If G is nicely almost n-simply presented, then G is almost $\omega_1 p^{\omega+n}$ -projective.

Proof. The usage of Theorem 2.7 (b) gives that the factor $G/p^{\omega+n}G$ is nicely almost *n*-simply presented. This combined with Proposition 2.6 allows us to deduce that $G/p^{\omega+n}G$ is almost $p^{\omega+n}$ -projective. And since $p^{\omega+n}G$ is countable, we obtain by Definition 2 that G is almost $\omega_1 p^{\omega+n}$ -projective, as expected.

It was shown above in Theorem 2.13 that almost $\omega_1 p^{\omega+n}$ -projective groups are almost *n*-simply presented, provided that their first Ulm subgroup is countable. In the next statement this limitation will be dropped off.

PROPOSITION 2.15. Almost $\omega_1 p^{\omega+n}$ -projective groups are almost *n*-simply presented.

Proof. Assume that G is such a group. From ([3], Theorem 2.21 (2)), it follows that there is $P \leq G[p^n]$ such that G/P is the sum of a countable group and an almost Σ -cyclic group. However, it was shown in the proof of Theorem 2.25 again in [3] that this sum is necessarily almost simply presented, as required.

REMARK 2. Notice that an almost $\omega_1 p^{\omega+n}$ -projective group need not be nicely almost *n*-simply presented.

When n = 0, i.e., for simply presented groups, Theorem 2.13 can be refined. To achieve this, we first need one more technicality. It is actually a non-trivial generalization of the classical Charles' lemma for Σ -cyclic groups (see, e.g., [7]).

LEMMA 2.16. The group G is the sum of a countable group and an almost Σ -cyclic group if and only if there is a countable subgroup $K \leq G$ such that G/K is almost Σ -cyclic.

Proof. " \Rightarrow ". Assume G = L + S where L is countable and S is almost Σ -cyclic. Since $L \cap S \subseteq S$ is countable, there is a countable nice subgroup C of S such that $L \cap S \subseteq C$. In accordance with [3], S/C is almost Σ -cyclic. But

$$G/C = (L+S)/C = [(L+C)/C] \oplus [S/C] = (K/C) \oplus (S/C)$$

where we put K = L + C. Thus $G/C/K/C \cong G/K \cong S/C$ is almost Σ -cyclic, as stated.

"⇐". Since $p^{\omega}G \subseteq K$ is countable, we see that the containing group $p^{\omega}G \cong (H_G \oplus p^{\omega}G)/H_G \subseteq G/H_G$ is also countable because $(H_G \oplus p^{\omega}G)/H_G$ is an essential subgroup of G/H_G due to the fact that H_G is maximal with respect to $H_G \cap p^{\omega}G = \{0\}$. Furthermore, one may write $G = H_G + C$ for some countable $C \leq G$. However,

$$H_G \cong (H_G \oplus p^{\omega}G)/p^{\omega}G \subseteq G/p^{\omega}G$$

is almost Σ -cyclic because so is $G/p^{\omega}G$. In fact, $G/K \cong G/p^{\omega}G/K/p^{\omega}G$

is almost Σ -cyclic with countable factor-group $K/p^{\omega}G$, and so we can apply [10] to get that $G/p^{\omega}G$ is almost Σ -cyclic, as claimed.

So, we have at our disposal all the information needed to prove the following-compare also with Theorem 2.13 when n = 0.

THEOREM 2.17. The group G is almost simply presented with countable $p^{\omega}G$ if and only if G is the sum of a countable group and an almost Σ -cyclic group.

Proof. "Necessity". It follows that $G/p^{\omega}G$ is almost Σ -cyclic and $p^{\omega}G$ is countable, so that Lemma 2.16 works.

"Sufficiency". The preceding Lemma 2.16 tells us that there exists a countable subgroup K such that G/K is almost Σ -cyclic. Thus $p^{\omega}G \leq K$ must be countable. Moreover, as we have seen above in the proof of the sufficiency of the previous lemma, $G/p^{\omega}G$ is almost Σ -cyclic. Henceforth, we employ [12] to deduce that G is almost simply presented, as asserted.

PROPOSITION 2.18. Let $\phi : G \to A$ be an ω_1 -bijective homomorphism. If G is almost n-simply presented, then A is almost n-simply presented.

Proof. Assume that G/H is almost simply presented for some $H \leq G[p^n]$. Considering the induced homomorphism

$$\Phi: G/H \to A/\phi(H),$$

we deduce that $ker\Phi = (H + ker\phi)/H \cong ker\phi/(ker\phi \cap H)$ which is countable because $ker\phi$ is. In addition, $coker\phi = A/\phi(G) \cong A/\phi(H)/\phi(G)/\phi(H) = A/\phi(H)/\Phi(G/H) = coker\Phi$ are both countable as well. Thus Φ is also an ω_1 -bijection. We furthermore apply [6] to conclude that $A/\phi(H)$ is almost simply presented. Since $\phi(H) \subseteq A[p^n]$, the argument is completed. \Box

As a consequence necessary for further applications, we have:

COROLLARY 2.19. Suppose that G is an almost n-simply presented group and C is its countable subgroup. Then G/C is almost n-simply presented.

Proof. Since the natural map $G \to G/C$, being an epimorphism, is an ω_1 -bijection, Proposition 2.18 allows us to conclude that the quotient-group G/C is almost *n*-simply presented as well.

Almost n-simply presented groups are also closed under taking countable extensions. Specifically, the following is true:

PROPOSITION 2.20. Let $A \leq G$ with countable factor G/A. If A is almost n-simply presented, then G is almost n-simply presented.

Proof. Write G = A + K for some countable $K \leq G$, and assume that A/P is almost simply presented for some $P \leq A[p^n]$. Therefore, G/P = [A/P] + [(K+P)/P] where $(K+P)/P \cong K/(K \cap P)$ is countable, and an appeal to [11] or [2] gives that G/P is almost simply presented, as required.

Before proving a slight refinement of the preceding result concerning ω_1 -bijections, two preliminary technical claims are necessary.

LEMMA 2.21. Suppose that α is an ordinal, and that G and F are groups where F is finite. Then the following formula is fulfilled:

$$p^{\alpha}(G+F) = p^{\alpha}G + F \cap p^{\alpha}(G+F).$$

Proof. We will use a transfinite induction on α . First, if $\alpha - 1$ exists, we have

$$p^{\alpha}(G+F) = p(p^{\alpha-1}(G+F)) = p(p^{\alpha-1}G+F \cap p^{\alpha-1}(G+F)) = p(p^{\alpha-1}G) + p(F \cap p^{\alpha-1}(G+F)) \subseteq p^{\alpha}G + F \cap p(p^{\alpha-1}(G+F)) = p^{\alpha}G + F \cap p^{\alpha}(G+F).$$

Since the reverse inclusion " \supseteq " is obvious, we obtain the desired equality.

If now $\alpha - 1$ does not exist, we have that $p^{\alpha}(G + F) = \bigcap_{\beta < \alpha} (p^{\beta}(G + F)) \subseteq \bigcap_{\beta < \alpha} (p^{\beta}G + F) = \bigcap_{\beta < \alpha} p^{\beta}G + F = p^{\alpha}G + F$. In fact, the second sign "=" follows like this: Given $x \in \bigcap_{\beta < \alpha} (p^{\beta}G + F)$, we write that $x = g_{\beta_1} + f_1 = \cdots = g_{\beta_s} + f_s = \cdots$ where $f_1, \cdots, f_s \in F$ are the all elements of F; $g_{\beta_1} \in p^{\beta_1}G, \cdots, g_{\beta_s} \in p^{\beta_s}G$ with $\beta_1 < \cdots < \beta_s < \cdots$.

Since F is finite, while the number of equalities is infinite due to the infinite cardinality of α , we infer that $g_{\beta_s} \in p^{\beta}G$ for any ordinal $\beta < \alpha$ which means that $g_{\beta_s} \in \bigcap_{\beta < \alpha} p^{\beta}G = p^{\alpha}G$. Thus $x \in \bigcap_{\beta < \alpha} p^{\beta}G + F = p^{\alpha}G + F$, as claimed. Furthermore, $p^{\alpha}(G+F) \subseteq (p^{\alpha}G+F) \cap p^{\alpha}(G+F) = p^{\alpha}G + F \cap p^{\alpha}(G+F)$ which is obviously equivalent to an equality. \Box

LEMMA 2.22. Let N be a nice subgroup of a group G. Then (i) N + R is nice in G for every finite subgroup $R \leq G$; (ii) N is nice in G + F for each finite group F.

Proof. (i) For any limit ordinal γ , we deduce that $\bigcap_{\delta < \gamma} (N + R + p^{\delta}G) \subseteq R + \bigcap_{\delta < \gamma} (N + p^{\delta}G) = R + N + p^{\gamma}G$, as required. Indeed, the relation " \subseteq " follows like this: Given $x \in \bigcap_{\delta < \gamma} (N + R + p^{\delta}G)$, we write $x = a_1 + r_1 + g_1 = \cdots = a_s + r_s + g_s = \cdots = a_k + r_1 + g_k = \cdots$, where $a_1, \cdots, a_k \in N$; $r_1, \cdots, r_k \in R$; $g_1 \in p^{\delta_1}G, \cdots, g_k \in p^{\delta_k}G$ with $\delta_1 < \cdots < \delta_k$. So $a_1 + g_1 = \cdots = a_k + g_k = \cdots \in \bigcap_{\delta < \gamma} (N + p^{\delta}G)$ and hence $x \in R + \bigcap_{\delta < \gamma} (N + p^{\delta}G)$, as requested.

(ii) Since N is nice in G, we may write $\bigcap_{\delta < \gamma} [N + p^{\delta}G] = N + p^{\gamma}G$ for every limit ordinal γ . Furthermore, with Lemma 2.21 at hand, we subsequently deduce that

$$\bigcap_{\delta < \gamma} [N + p^{\delta}(G + F)] = \bigcap_{\delta < \gamma} [N + p^{\delta}G + F \cap p^{\delta}(G + F)] \subseteq$$

 $\bigcap_{\delta < \gamma} (N + p^{\delta}G) + F \cap p^{\gamma}(G + F) = N + p^{\gamma}G + F \cap p^{\gamma}(G + F) = N + p^{\gamma}(G + F).$

In fact, the inclusion " \subseteq " follows thus: Given $x \in \bigcap_{\delta < \gamma} [N + p^{\delta}G + F \cap p^{\delta}(G + F)]$, we write $x = a_1 + g_1 + f_1 = \cdots = a_s + g_s + f_s = \cdots = a_k + g_k + f_1 = \cdots$, where $a_1, \cdots, a_k \in N$; $g_1 \in p^{\delta_1}G, \cdots, g_k \in p^{\delta_k}G$;

 $f_1 \in F \cap p^{\delta_1}(G+F), \dots, f_k \in F \cap p^{\delta_k}(G+F)$ with $\delta_1 < \dots < \delta_k$. Hence $a_1 + g_1 = \dots = a_k + g_k = \dots \in \cap_{\delta < \gamma}(N + p^{\delta}G)$ and because the number of the f_i 's $(1 \le i \le k)$ is finite whereas the number of equalities is not, we can deduce that $f_1 \in \cap_{\delta < \gamma}(F \cap p^{\delta}(G+F)) = F \cap p^{\gamma}(G+F)$, as needed.

A helpful statement which we need to prove the next major assertion is the following:

PROPOSITION 2.23. Suppose G is a group with a finite subgroup F. The following two points hold:

(a) Then G is almost n-simply presented if and only if G/F is almost n-simply presented.

In particular, if G is nicely almost n-simply presented, then G/F is nicely almost n-simply presented.

(b) Suppose $A \leq G$ such that G/A is finite. Then G is almost n-simply presented if and only if A is almost n-simply presented.

Proof. (a) Assume first that G is almost n-simply presented, so G/P is almost simply presented for some $P \leq G[p^n]$. But

 $G/P/(F+P)/P \cong G/(F+P) \cong G/F/(F+P)/F$

where $(F+P)/P \cong F/(F \cap P)$ is finite while $(F+P)/F \cong P/(P \cap F)$ is p^n -bounded, whence Theorem 1.8 from [3] assures that both G/P/(F + P)/P and G/F/(F + P)/F should be almost simply presented. Thus G/F is almost *n*-simply presented, as stated.

As for the "nicely" case, since P must be by definition nice in G, we observe with the help of Lemma 2.22 that P + F remains nice in G, so (P + F)/F is nice in G/F, as required.

Conversely, given G/F is almost *n*-simply presented group, we have that $G/F/L/F \cong G/L$ is almost simply presented for some $L \leq G$ with $p^nL \subseteq F$. Therefore, one can write $L = M \oplus Q$ where M is bounded by p^n whereas Q is finite. Now $G/M/L/M \cong G/L$ is almost simply presented with finite $L/M \cong Q$. Again Theorem 1.8 from [3] is utilized to conclude that G/M is almost simply presented, as needed to get that G is almost *n*-simply presented.

(b) Write G = A + E where E is a finite subgroup. Thus $G/E = (A + E)/E \cong A/(A \cap E)$ where $A \cap E$ remains finite. Hence we can apply the previous point (a) to infer the equivalence.

We now have all the ingredients needed to establish the following.

THEOREM 2.24. Let $\varphi : G \to A$ be an ω -bijective homomorphism. Then G is almost n-simply presented if and only if A is almost n-simply presented.

In addition, if G is nicely almost n-simply presented, then so is A.

Proof. By considering the natural composition $G \to Im\varphi \to A$, we may break the arguments into the two cases (a) and (b) of Proposition 2.23.

However, when the subgroup is taken a priori to be nice in the whole group, some improvements can be established, thus enlarging Proposition 5.3 from [14] to almost *n*-simply presented groups (for results of that type the reader can see [6]).

THEOREM 2.25. Let N be a countable nice subgroup of a group G such that $p^{\omega}G$ is countable. Then G is almost n-simply presented if and only if G/N is almost n-simply presented.

Proof. The necessity follows from Corollary 2.19, so that we concentrate on the sufficiency. To that aim, observe with the aid of Proposition 2.8 that

$$G/N/p^{\omega}(G/N) \cong G/(p^{\omega}G+N) \cong G/p^{\omega}G/(p^{\omega}G+K)/p^{\omega}G$$

is almost $p^{\omega+n}$ -projective. Since $(p^{\omega}G + K)/p^{\omega}G \cong K/(K \cap p^{\omega}G)$ is countable (and nice in $G/p^{\omega}G$), it follows from Proposition 2.10 of [3] that $G/p^{\omega}G$ is almost $p^{\omega+n}$ -projective too. Thus G is (nicely) almost $\omega_1 \cdot p^{\omega+n}$ -projective, and hence Theorem 2.13 works.

As a valuable consequence, we derive:

COROLLARY 2.26. Suppose K is a countable subgroup of G. If G/K is separable almost n-simply presented, then G is almost n-simply presented.

Proof. Since $p^{\omega}G \subseteq K$ is obviously countable and K is nice in G, Proposition 2.25 is applicable to infer the statement. \Box

REMARK 3. The last statement improves Corollary 5.4 from [14] to almost simply presented groups.

It is obvious that the arbitrary direct sum of (nicely) almost *n*-simply presented groups is again (nicely) almost *n*-simply presented. So, we finish with the exploration of the direct summand problem for (nicely) almost *n*-simply presented groups (see [15] as well).

PROPOSITION 2.27. Let $A = B \oplus C$ be a group for some subgroups B and C. If

(1) A is almost n-simply presented such that C is countable, then B is almost n-simply presented.

(2) A is nicely almost n-simply presented such that $p^{\omega+n}C = \{0\}$, then B is nicely almost n-simply presented.

Proof. (1) Clearly, using Corollary 2.19, we deduce that $B \cong A/C$ is almost *n*-simply presented.

(2) Referring to Theorem 2.7 (b), $p^{\omega+n}B = p^{\omega+n}A$ is almost *n*-simply presented. Moreover, $A/p^{\omega+n}A \cong (B/p^{\omega+n}B) \oplus C$, where in virtue of Theorem 2.7 accomplished with Proposition 2.6 we have that $A/p^{\omega+n}A$ is almost $p^{\omega+n}$ -projective. Now, appealing to [3], so is $B/p^{\omega+n}B$ as being a subgroup. Finally, Theorem 2.10 is a guarantor that *B* is nicely almost *n*-simply presented.

3. Concluding Discussion and Open Problems

We were unable to prove that if A is a group such that $p^{\omega+n}A = \{0\}$ and $A/p^{\omega}A$ is almost $p^{\omega+n}$ -projective, then A is almost n-simply presented, and vice versa. The crucial moment is to show (if possible) that if A is a group with a subgroup H such that A/H is almost Σ -cyclic and $p^nH \subseteq p^{\omega}A \subseteq A[p^n]$, then A/p^nH is almost simply presented, and as a consequence A will be almost n-simply presented.

If these are true, then

$$A/p^{\omega}A \cong A/p^{\omega+n}A/p^{\omega}A/p^{\omega+n}A = A/p^{\omega+n}A/p^{\omega}(A/p^{\omega+n}A)$$

being almost *n*-simply presented will imply that $A/p^{\omega+n}A$ is also almost *n*-simply presented. Moreover, if $p^{\omega}A$ is bounded, then so will be $p^{\omega+n}A$ according to Lemma 2.3, and hence owing to Theorem 2.10 the next statement will be fulfilled.

CONJECTURE 1. Suppose A is a group such that both $p^{\omega}A$ and $A/p^{\omega}A$ are almost $p^{\omega+n}$ -projective. Then A is almost n-simply presented.

The last can slightly be improved to the following.

CONJECTURE 2. Suppose G is a group of length λ strictly less than ω^2 . Then G is almost n-simply presented if and only if, for every non-negative integer m, $p^{\omega \cdot m}G/p^{\omega \cdot (m+1)}G$ is almost $p^{\omega + n}$ -projective.

Idea for proof. " \Rightarrow ". Referring to Theorem 2.7 (a), $G/p^{\omega \cdot (m+1)}G$ is also almost *n*-simply presented. Hence again applying Theorem 2.7 (a), we deduce that $p^{\omega \cdot m}(G/p^{\omega \cdot (m+1)}G) = p^{\omega \cdot m}G/p^{\omega \cdot (m+1)}G$ is almost *n*-simply presented too. Since $p^{\omega \cdot m}G/p^{\omega \cdot (m+1)}G$ is obviously p^{ω} -bounded, Proposition 2.5 applies to infer that this quotient is actually almost $p^{\omega+n}$ -projective.

"⇐". For m = 0 we have that $G/p^{\omega}G$ is almost $p^{\omega+n}$ -projective. When m = 1 we obtain that $p^{\omega}G/p^{\omega\cdot 2}G = p^{\omega}(G/p^{\omega\cdot 2}G)$ is almost $p^{\omega+n}$ -projective. However, $G/p^{\omega}G \cong G/p^{\omega\cdot 2}G/p^{\omega}G/p^{\omega\cdot 2}G = G/p^{\omega\cdot 2}G/p^{\omega}$ $(G/p^{\omega\cdot 2}G)$ is almost $p^{\omega+n}$ -projective. Consequently, Conjecture 1 is applicable to get that $G/p^{\omega\cdot 2}G$ is almost n-simply presented. Hence, Theorem 2.7 (a) gives that $p^{\omega}(G/p^{\omega\cdot 2}G) = p^{\omega}G/p^{\omega\cdot 2}G \cong p^{\omega}G/p^{\omega\cdot 3}G/p^{\omega\cdot 2}G$ $G/p^{\omega\cdot 3}G = p^{\omega}G/p^{\omega\cdot 3}G/p^{\omega}(p^{\omega}G/p^{\omega\cdot 3}G)$. But by hypothesis $p^{\omega\cdot 2}G/p^{\omega\cdot 3}G = p^{\omega}(p^{\omega}G/p^{\omega\cdot 3}G)$ is almost $p^{\omega+n}$ -projective. Now Conjecture 1 implies that $p^{\omega}G/p^{\omega\cdot 3}G$ is almost n-simply presented. Moreover, $G/p^{\omega}G \cong G/p^{\omega\cdot 3}G/p^{\omega}(G/p^{\omega\cdot 3}G)$ is almost $p^{\omega+n}$ -projective. Therefore, again Conjecture 1 forces that $G/p^{\omega\cdot 3}G$ is almost n-simply presented, etc. after final steps to $G/p^{\lambda}G \cong G$ is almost n-simply presented, as wanted. \Box

In closing, we shall state some left-open problems that still elude us.

PROBLEM 1. Let G be a group such that $P \leq G$ is almost simply presented and G/P is almost Σ -cyclic. What we can say about the structure of G?

PROBLEM 2. Let G be a group such that $P \leq G$ is almost Σ -cyclic and G/P is almost simply presented. What we can say about the structure of G?

PROBLEM 3. Describe the structure of *(nicely)* almost ω_1 -*n-simply* presented groups that are groups G for which there exist countable (nice) subgroups C such that G/C are almost *n*-simply presented.

For papers related to the last question the reader may see [3] and [4].

PROBLEM 4. For groups A and B decide when Tor(A, B) is almost nsimply presented (in particular, almost $p^{\omega+n}$ -projective) whenever $n \geq 0$.

Acknowledgement. The author owes his sincere thanks to the referee for the remarks made which helped to improve the presentation of the article.

References

- B. Balof and P. Keef, Invariants on primary abelian groups and a problem of Nunke, Note Mat. 29 (2) (2009), 83–114.
- P. Danchev, On extensions of primary almost totally projective groups, Math. Bohemica 133 (2) (2008), 149–155.
- [3] P. Danchev, On almost $\omega_1 p^{\omega+n}$ -projective abelian p-groups, accepted.
- [4] P. Danchev, On ω_1 -n-simply presented abelian p-groups, submitted.
- [5] P. Danchev and P. Keef, Generalized Wallace theorems, Math. Scand. 104 (1) (2009), 33–50.
- [6] P. Danchev and P. Keef, Nice elongations of primary abelian groups, Publ. Mat. 54 (2) (2010), 317–339.
- [7] P. Danchev and P. Keef, An application of set theory to $\omega + n$ -totally $p^{\omega+n}$ -projective primary abelian groups, Mediterr. J. Math. (4) 8 (2011), 525–542.
- [8] L. Fuchs, Infinite Abelian Groups, volumes I and II, Acad. Press, New York and London, 1970 and 1973.
- [9] P. Griffith, Infinite Abelian Group Theory, The University of Chicago Press, Chicago-London, 1970.
- [10] P. Hill, Almost coproducts of finite cyclic groups, Comment. Math. Univ. Carolin. 36 (4) (1995), 795–804.
- [11] P. Hill and W. Ullery, Isotype separable subgroups of totally projective groups, Abelian Groups and Modules, Proc. Padova Conf., Padova 1994, Kluwer Acad. Publ. 343 (1995), 291–300.
- [12] P. Hill and W. Ullery, Almost totally projective groups, Czechoslovak Math. J. 46 (2) (1996), 249–258.
- [13] P. Keef, On ω_1 - $p^{\omega+n}$ -projective primary abelian groups, J. Algebra Numb. Th. Acad. **1** (1) (2010), 41–75.
- P. Keef and P. Danchev, On n-simply presented primary abelian groups, Houston J. Math. 38 (4) (2012), 1027–1050.
- [15] P. Keef and P. Danchev, On m, n-balanced projective and m, n-totally pojective primary abelian groups, J. Korean Math. Soc. 50 (2) (2013), 307–330.

Department of Mathematics, Plovdiv University "P. Hilendarski", Plovdiv 4000, Bulgaria *E-mail*: pvdanchev@yahoo.com