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ON THE BIRKHOFF INTEGRAL OF FUZZY

MAPPINGS IN BANACH SPACES

Chun-Kee Park

Abstract. In this paper, we introduce the Birkhoff integral of
fuzzy mappings in Banach spaces in terms of the Birkhoff inte-
gral of set-valued mappings and investigate some properties of the
Birkhoff integrals of set-valued mappings and fuzzy mappings in Ba-
nach spaces.

1. Introduction

Birkhoff [2] introduced the Birkhoff integral for Banach space valued
functions. Birkhoff integrability lies strictly between Bochner and Pettis
integrability when the range space X is nonseparable [2, 8]. Lately,
Several authors [4,7,9] have investigated the Birkhoff integral for Banach
space valued functions. Several types of integrals of set-valued mappings
were introduced by many authors. In particular, Cascales and Rodriguez
[3] introduced the Birkhoff integral of CWK(X)-valued mappings by
means of a certain embedding of CWK(X) into a Banach space. Several
authors introduced the integrals of fuzzy mappings in Banach spaces in
terms of the integrals of set-valued mappings. In particular, Xue, Ha
and Ma [10] and Xue, Wang and Wu [11] introduced integrals of fuzzy
mappings in Banach spaces in terms of Aumann-Pettis and Aumann-
Bochner integrals of set-valued mappings.
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In this paper, we introduce the Birkhoff integral of fuzzy mappings in
Banach spaces in terms of the Birkhoff integral of set-valued mappings
and investigate some properties of the Birkhoff integrals of set-valued
mappings and fuzzy mappings in Banach spaces and obtain convergence
theorems for set-valued mappings and fuzzy mappings in Banach spaces.

2. Preliminaries

Throughout this paper, (Ω,Σ, µ) denotes a complete finite measure
space and (X, ‖ · ‖) a Banach space with dual X∗. The closed unit ball
of X∗ is denoted by BX∗ . CL(X) denotes the family of all nonempty
closed subsets of X and CWK(X) the family of all nonempty convex
weakly compact subsets of X. For A ⊆ X and x∗ ∈ X∗, let s(x∗, A) =
sup{x∗(x) : x ∈ A}, the support function of A. For A,B ∈ CL(X), let
H(A,B) denote the Hausdorff metric of A and B defined by

H(A,B) = max

(
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

)
,

where d(a,B) = inf
b∈B
‖a− b‖ and d(b, A) = inf

a∈A
‖a− b‖. Especially,

H(A,B) = sup
x∗∈BX∗

|s(x∗, A)− s(x∗, B)|

whenever A,B are convex sets.
Note that (CWK(X), H) is a complete metric space with the follow-

ing properties:
(1) H(λA, λB) = |λ|H(A,B) for all A,B ∈ CWK(X) and λ ∈ R;
(2) H(A+ C,B + C) = H(A,B) for all A,B,C ∈ CWK(X);
(3) H(A + C,B + D) ≤ H(A,B) + H(C,D) for all A,B,C,D ∈

CWK(X).
The number ‖A‖ is defined by ‖A‖ = H(A, {0}) = sup

x∈A
‖x‖.

Let u : X → [0, 1]. We denote [u]r = {x ∈ X : u(x) ≥ r} for r ∈ (0, 1]
and [u]0 = cl{x ∈ X : u(x) > 0}. u is called a generalized fuzzy number
on X if for each r ∈ (0, 1], [u]r ∈ CWK(X). Let F(X) denote the set
of all generalized fuzzy numbers on X. For u, v ∈ F(X) and λ ∈ R, we
define u+ v and λu as follows:

(u+ v)(x) = sup
x=y+z

min(u(y), v(z)),
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(λu)(x) = u

(
1

λ
x

)
, λ 6= 0

λu = 0̃, λ = 0, where 0̃ = χ{0}.

For u, v ∈ F(X) and λ ∈ R, [u + v]r = [u]r + [v]r and [λu]r = λ[u]r

for each r ∈ (0, 1]. Hence u+ v, λu ∈ F(X). For u, v ∈ F(X), we define
u ≤ v as follows:

u ≤ v if u(x) ≤ v(x) for all x ∈ X.
For u, v ∈ F(X), u ≤ v if and only if [u]r ⊆ [v]r for each r ∈ (0, 1].
Define D : F(X)×F(X)→ [0,+∞] by the equation

D(u, v) = sup
r∈(0,1]

H([u]r, [v]r).

Then D is a metric on F(X). The norm ‖u‖ of u ∈ F(X) is defined by

‖u‖ = D(u, 0̃) = sup
r∈(0,1]

H([u]r, {0}) = sup
r∈(0,1]

‖[u]r‖.

The mapping F : Ω → CL(X) is called a set-valued mapping. F
is said to be scalarly measurable if for every x∗ ∈ X∗, the real-valued
function s(x∗, F (·)) is measurable. F is said to be Effros measurable
(or measurable for short) if F−1(U) = {ω ∈ Ω : F (ω) ∩ U 6= φ} ∈ Σ
for every open subset U of X. Note that measurability is stronger than
scalar measurability.

Let F : Ω→ CL(X). Then the following statements are equivalent:
(1) F : Ω→ CL(X) is measurable;
(2) F−1(A) = {ω ∈ Ω : F (ω) ∩ A 6= φ} ∈ Σ for every A ∈ CL(X);
(3) (Castaing representation) there exists a sequence (fn) of measur-

able functions fn : Ω→ X such that F (ω) = cl{fn(ω)} for all ω ∈ Ω.
F : Ω → CL(X) is said to be weakly integrably bounded if the real-

valued function |x∗F | : Ω → R, |x∗F |(ω) = sup{|x∗(x)| : x ∈ F (ω)}, is
integrable for every x∗ ∈ X∗. F : Ω → CL(X) is said to be integrably
bounded if there exists an integrable real-valued function h such that for
each ω ∈ Ω, ‖x‖ ≤ h(ω) for all x ∈ F (ω). F : Ω → CL(X) is said to
be scalarly integrable on Ω if for every x∗ ∈ X∗, s(x∗, F (·)) is integrable
on Ω. F : Ω → CL(X) is said to be scalarly uniformly integrable if
the set {s(x∗, F (·)) : x∗ ∈ BX∗} is uniformly integrable. f : Ω → X is
called a measurable selector of F : Ω → CL(X) if f is measurable and
f(ω) ∈ F (ω) for all ω ∈ Ω.



442 Chun-Kee Park

A measurable set-valued mapping F : Ω → CWK(X) is said to
be Pettis integrable on Ω if F : Ω → CWK(X) is scalarly integrable

on Ω and for each A ∈ Σ there exists (P )

∫
A

Fdµ ∈ CWK(X) such

that s(x∗, (P )

∫
A

Fdµ) =

∫
A

s(x∗, F )dµ for all x∗ ∈ X∗. In this case,

(P )

∫
A

Fdµ is called the Pettis integral of F over A [6].

A function f : Ω → X is called summable with respect to a given
countable partition Γ = (An) of Ω in Σ if f |An is bounded whenever
µ(An) > 0 and the set

J(f,Γ) =

{∑
n

µ(An)f(tn) : tn ∈ An

}
is made up of unconditionally convergent series.

Definition 2.1.[2]. A function f : Ω → X is said to be Birkhoff
integrable on Ω if for every ε > 0 there exists a countable partition Γ of
Ω in Σ for which f is summable and ‖·‖-diam (J(f,Γ)) < ε. In this case,

the Birkhoff integral (B)

∫
Ω

fdµ of f is the only point in the intersection

∩
{
co(J(f,Γ)) : f is summable with respect to Γ

}
.

If f : Ω→ X is Birkhoff integrable on Ω, then f : Ω→ X is Birkhoff
integrable on every A ∈ Σ. Birkhoff integrability lies strictly between
Bochner and Pettis integrability. If f : Ω → X is Birkhoff integrable,

then (B)

∫
Ω

fdµ = (P )

∫
Ω

fdµ. When the range space X is separable,

Birkhoff and Pettis integrability are the same. In the definition of the
Birkhoff integral, if the respective series

J(f,Γ) =

{∑
n

µ(An)f(tn) : tn ∈ An

}
is made up of absolutely convergent series, then f : Ω→ X is said to be
absolutely Birkhoff integrable on Ω [1].

Theorem 2.2.[5]. Let `∞(BX∗) be the Banach space of bounded
real-valued functions defined on BX∗ endowed with the supremum norm
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‖·‖∞. Then the map j : CWK(X) −→ `∞(BX∗) given by j(A) := s(·, A)
satisfies the following properties:

(1) j(A+B) = j(A) + j(B) for every A,B ∈ CWK(X);
(2) j(λA) = λj(A) for every λ ≥ 0 and A ∈ CWK(X);
(3) H(A,B) = ‖j(A)− j(B)‖∞ for every A,B ∈ CWK(X);
(4) j(CWK(X)) is closed in `∞(BX∗).

Definition 2.3.[3]. A set-valued mapping F : Ω→ CWK(X) is said
to be Birkhoff integrable on Ω if the composition j ◦ F : Ω → `∞(BX∗)
is Birkhoff integrable on Ω. In this case, for each A ∈ Σ there exists

a unique element (B)

∫
A

Fdµ ∈ CWK(X), that is called the Birkhoff

integral of F on A, such that j((B)

∫
A

Fdµ) = (B)

∫
A

j ◦ Fdµ.

3. Results

A mapping F̃ : Ω→ F(X) is called a fuzzy mapping in a Banach space
X. In this case, F̃ r : Ω→ CWK(X) defined by F̃ r(ω) = [F̃ (ω)]r is a set-
valued mapping for each r ∈ (0, 1]. A fuzzy mapping F̃ : Ω → F(X) is
said to be measurable (resp., scalarly measurable) if F̃ r : Ω→ CWK(X)
is measurable (resp., scalarly measurable) for each r ∈ (0, 1].

Definition 3.1. A fuzzy mapping F̃ : Ω → F(X) is said to be
Birkhoff integrable on Ω if for each A ∈ Σ there exists uA ∈ F(X)

such that [uA]r = (B)

∫
A

F̃ rdµ for each r ∈ (0, 1]. In this case, uA =

(B)

∫
A

F̃ dµ is called the Birkhoff integral of F̃ on A.

Theorem 3.2. Let F̃ : Ω → F(X) and G̃ : Ω → F(X) be Birkhoff
integrable on Ω and λ ≥ 0. Then

(1) F̃ + G̃ is Birkhoff integrable on Ω and for each A ∈ Σ

(B)

∫
A

(F̃ + G̃)dµ = (B)

∫
A

F̃ dµ+ (B)

∫
A

G̃dµ,

(2) λF̃ is Birkhoff integrable on Ω and for each A ∈ Σ

(B)

∫
A

λF̃dµ = λ(B)

∫
A

F̃ dµ.
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Proof. (1) Let F̃ : Ω → F(X) and G̃ : Ω → F(X) be Birkhoff
integrable on Ω. Then for each A ∈ Σ there exist uA, vA ∈ F(X)

such that [uA]r = (B)

∫
A

F̃ rdµ, [vA]r = (B)

∫
A

G̃rdµ for each r ∈ (0, 1].

Thus j ◦ F̃ r and j ◦ G̃r are Birkhoff integrable on Ω and j([uA]r) =

j((B)

∫
A

F̃ rdµ) =

∫
A

j ◦ F̃ rdµ, j([vA]r) = j((B)

∫
A

G̃rdµ) =

∫
A

j ◦ G̃rdµ

for each r ∈ (0, 1] and A ∈ Σ. Hence j ◦ (F̃ + G̃)r = j ◦ (F̃ r + G̃r) is
Birkhoff integrable on Ω and

[j([uA + vA]r)](x∗) = [j([uA]r) + j([vA]r)](x∗)

= [j([uA]r)](x∗) + [j([vA]r)](x∗)

= [j((B)

∫
A

F̃ rdµ)](x∗) + [j((B)

∫
A

G̃rdµ)](x∗)

= [(B)

∫
A

j ◦ F̃ rdµ)](x∗) + [(B)

∫
A

j ◦ G̃rdµ](x∗)

= [(B)

∫
A

j ◦ (F̃ r + G̃r)dµ](x∗)

= [(B)

∫
A

j ◦ (F̃ + G̃)rdµ](x∗)

for each x∗ ∈ BX∗ , r ∈ (0, 1] and A ∈ Σ. Hence j ([uA + vA]r) =∫
A

j ◦ (F̃ + G̃)rdµ for each r ∈ (0, 1] and A ∈ Σ. Thus [uA + vA]r =

(B)

∫
A

(F̃+G̃)rdµ for each r ∈ (0, 1] and A ∈ Σ. Hence F̃+G̃ is Birkhoff

integrable on Ω and for each A ∈ Σ

(B)

∫
A

(F̃ + G̃)dµ = uA + vA = (B)

∫
A

F̃ dµ+ (B)

∫
A

G̃dµ.

(2) Let F̃ : Ω → F(X) be Birkhoff integrable on Ω and λ ≥ 0.

Then there exists uA ∈ F(X) such that [uA]r = (B)

∫
A

F̃ rdµ for each

r ∈ (0, 1]. Since j([λuA]r) = λj([uA]r) for each r ∈ (0, 1] and A ∈ Σ,
using the same method as (1) we obtain that λF̃ is Birkhoff integrable
on Ω and for each A ∈ Σ
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(B)

∫
A

λF̃dµ = λ(B)

∫
A

F̃ dµ.

Lemma 3.3. Let F : Ω → CWK(X) and G : Ω → CWK(X) be
Birkhoff integrable set-valued mappings. Then

(1) if F (ω) = G(ω) µ-a.e., then (B)

∫
A

Fdµ = (B)

∫
A

Gdµ for each

A ∈ Σ;

(2) if X is separable and (B)

∫
A

Fdµ = (B)

∫
A

Gdµ for each A ∈ Σ,

then F (ω) = G(ω) µ-a.e.

Proof. (1) Since F : Ω → CWK(X) and G : Ω → CWK(X)
are Birkhoff integrable on Ω, j ◦ F and j ◦ G are Birkhoff integrable

on Ω and there exist (B)

∫
A

Fdµ, (B)

∫
A

Gdµ ∈ CWK(X) such that

j((B)

∫
A

Fdµ) = (B)

∫
A

j ◦ Fdµ, j((B)

∫
A

Gdµ) = (B)

∫
A

j ◦ Gdµ for

each A ∈ Σ.
If F (ω) = G(ω) µ-a.e., then (j ◦ F )(ω) = (j ◦G)(ω) µ-a.e. Hence

j((B)

∫
A

Fdµ) = (B)

∫
A

j ◦ Fdµ = (B)

∫
A

j ◦Gdµ = j((B)

∫
A

Gdµ)

for each A ∈ Σ. Thus

s(x∗, (B)

∫
A

Fdµ) = [j((B)

∫
A

Fdµ)](x∗)

= [j((B)

∫
A

Gdµ)](x∗)

= s(x∗, (B)

∫
A

Gdµ)

for each x∗ ∈ BX∗ andA ∈ Σ. Since (B)

∫
A

Fdµ, (B)

∫
A

Gdµ ∈ CWK(X)

for each A ∈ Σ, by the separation theorem (B)

∫
A

Fdµ = (B)

∫
A

Gdµ

for each A ∈ Σ.
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(2) If (B)

∫
A

Fdµ = (B)

∫
A

Gdµ for each A ∈ Σ, then

(B)

∫
A

j ◦ Fdµ = j((B)

∫
A

Fdµ) = j((B)

∫
A

Gdµ) = (B)

∫
A

j ◦Gdµ

for each A ∈ Σ. Since X is a separable Banach space, by [2, Theorem
24] (j ◦F )(ω) = (j ◦G)(ω) µ-a.e. and so H(F (ω), G(ω)) = ‖(j ◦F )(ω)−
(j ◦G)(ω)‖∞ = 0 µ-a.e. Hence F (ω) = G(ω) µ-a.e.

Theorem 3.4. Let F̃ : Ω → F(X) and G̃ : Ω → F(X) be Birkhoff

integrable on Ω. If F̃ (ω) = G̃(ω) µ-a.e., then (B)

∫
A

F̃ dµ = (B)

∫
A

G̃dµ

for each A ∈ Σ.

Proof. Since F̃ : Ω → F(X) and G̃ : Ω → F(X) are Birkhoff in-
tegrable on Ω, for each A ∈ Σ there exist uA, vA ∈ F(X) such that

[uA]r = (B)

∫
A

F̃ rdµ, [vA]r = (B)

∫
A

G̃rdµ for each r ∈ (0, 1]. If F̃ (ω) =

G̃(ω) µ-a.e., then F̃ r(ω) = G̃r(ω) µ-a.e. for each r ∈ (0, 1]. By Lemma

3.3 [uA]r = (B)

∫
A

F̃ rdµ = (B)

∫
A

G̃rdµ = [vA]r for each r ∈ (0, 1] and

A ∈ Σ and so (B)

∫
A

F̃ dµ = uA = vA = (B)

∫
A

G̃dµ for each A ∈ Σ.

If X is separable and F : Ω→ CWK(X) is Birkhoff integrable on Ω,
then

(B)

∫
A

Fdµ =

{
(B)

∫
A

fdµ : f is a Birkhoff integrable selector of F

}
for each A ∈ Σ [3].

Lemma 3.5. Let X be separable and let F : Ω → CWK(X) and
G : Ω → CWK(X) be Birkhoff integrable set-valued mappings. If

F (ω) ⊆ G(ω) on Ω, then (B)

∫
A

Fdµ ⊆ (B)

∫
A

Gdµ for each A ∈ Σ.

Proof. Since F : Ω→ CWK(X) and G : Ω→ CWK(X) are Birkhoff
integrable on Ω and F (ω) ⊆ G(ω) on Ω, for each A ∈ Σ
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(B)

∫
A

Fdµ =

{
(B)

∫
A

fdµ : f is a Birkhoff integrable selector of F

}
⊆
{

(B)

∫
A

gdµ : g is a Birkhoff integrable selector of G

}
= (B)

∫
A

Gdµ.

Theorem 3.6. Let X be separable and let F̃ : Ω → F(X) and
G̃ : Ω→ F(X) be Birkhoff integrable on Ω. If F̃ (ω) ≤ G̃(ω) on Ω, then

(B)

∫
A

F̃ dµ ≤ (B)

∫
A

G̃dµ for each A ∈ Σ.

Proof. (1) Since F̃ : Ω → F(X) and G̃ : Ω → F(X) are Birkhoff
integrable on Ω, for each A ∈ Σ there exist uA, vA ∈ F(X) such that

[uA]r = (B)

∫
A

F̃ rdµ, [vA]r = (B)

∫
A

G̃rdµ for each r ∈ (0, 1]. If F̃ (ω) ≤

G̃(ω) on Ω, then F̃ r(ω) ⊆ G̃r(ω) on Ω for each r ∈ (0, 1]. By Lemma

3.5 [uA]r = (B)

∫
A

F̃ rdµ ⊆ (B)

∫
A

G̃rdµ = [vA]r for each r ∈ (0, 1] and

so (B)

∫
A

F̃ dµ = uA ≤ vA = (B)

∫
A

G̃dµ for each A ∈ Σ.

Lemma 3.7. Let X be separable. If F : Ω→ CWK(X) and G : Ω→
CWK(X) are measurable, integrably bounded and Birkhoff integrable
set-valued mappings, then H(F,G) is integrable on Ω and

H

(
(B)

∫
Ω

Fdµ, (B)

∫
Ω

Gdµ

)
≤
∫

Ω

H(F,G)dµ.

Proof. Since F : Ω → CWK(X) and G : Ω → CWK(X) are mea-
surable, there exist Castaing representations (fn) and (gn) for F and G.
Since fn and gn are measurable for all n ∈ N,

H(F (ω), G(ω)) =

max

(
sup
n≥1

inf
k≥1
‖fn(ω)− gk(ω)‖, sup

n≥1
inf
k≥1
‖gn(ω)− fk(ω)‖

)
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is measurable. Since F : Ω → CWK(X) and G : Ω → CWK(X) are
integrably bounded, there exist integrable real-valued functions h1 and
h2 on Ω such that for each ω ∈ Ω, ‖x‖ ≤ h1(ω) for all x ∈ F (ω) and
‖x‖ ≤ h2(ω) for all x ∈ G(ω). Hence

H(F (ω), G(ω)) ≤ H(F (ω), {0}) +H(G(ω), {0}) ≤ h1(ω) + h2(ω)

for each ω ∈ Ω. Therefore H(F,G) is integrable on Ω. Since F : Ω →
CWK(X) andG : Ω→ CWK(X) are Birkhoff integrable on Ω, j◦F and

j◦G are Birkhoff integrable on Ω and there exist (B)

∫
Ω

Fdµ, (B)

∫
Ω

Gdµ

∈ CWK(X) such that j((B)

∫
Ω

Fdµ) = (B)

∫
Ω

j◦Fdµ and j((B)

∫
Ω

Gdµ)

= (B)

∫
Ω

j◦Gdµ. SinceX is separable, by [3, Proposition 3.2] (B)

∫
Ω

Fdµ

= (P )

∫
Ω

Fdµ and (B)

∫
Ω

Gdµ = (P )

∫
Ω

Gdµ. Hence

H

(
(B)

∫
Ω

Fdµ, (B)

∫
Ω

Gdµ

)
=

∥∥∥∥j((B)

∫
Ω

Fdµ)− j((B)

∫
Ω

Gdµ)

∥∥∥∥
∞

= sup
x∗∈BX∗

∣∣∣∣[j((B)

∫
Ω

Fdµ)](x∗)− [j((B)

∫
Ω

Gdµ)](x∗)

∣∣∣∣
= sup

x∗∈BX∗

∣∣∣∣s(x∗, (B)

∫
Ω

Fdµ)− s(x∗, (B)

∫
Ω

Gdµ)

∣∣∣∣
= sup

x∗∈BX∗

∣∣∣∣s(x∗, (P )

∫
Ω

Fdµ)− s(x∗, (P )

∫
Ω

Gdµ)

∣∣∣∣
= sup

x∗∈BX∗

∣∣∣∣∫
Ω

s(x∗, F )dµ−
∫

Ω

s(x∗, G)dµ

∣∣∣∣
≤ sup

x∗∈BX∗

∫
Ω

|s(x∗, F )− s(x∗, G)| dµ

≤
∫

Ω

sup
x∗∈BX∗

|s(x∗, F )− s(x∗, G)| dµ

=

∫
Ω

H(F,G)dµ
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A fuzzy mapping F̃ : Ω → F(X) is said to be integrably bounded if
there exists an integrable real-valued function h on Ω such that for each

ω ∈ Ω, ‖x‖ ≤ h(ω) for all x ∈ F̃ 0(ω), where F̃ 0(ω) = cl
(
∪0<r≤1F̃

r(ω)
)

.

Theorem 3.8. Let X be separable. If F̃ : Ω → F(X) and G̃ : Ω →
F(X) are measurable, integrably bounded and Birkhoff integrable fuzzy
mappings, then D(F̃ , G̃) is integrable on Ω and

D

(
(B)

∫
Ω

F̃ dµ, (B)

∫
Ω

G̃dµ

)
≤
∫

Ω

D(F̃ , G̃)dµ.

Proof. Since F̃ : Ω → F(X) and G̃ : Ω → F(X) are measurable,
there exist Castaing representations (f r

n) and (grn) for F̃ r and G̃r for
each r ∈ (0, 1]. Since f r

n and grn are measurable for all n ∈ N,

H(F̃ r(ω), G̃r(ω))

= max

(
sup
n≥1

inf
k≥1
‖f r

n(ω)− grk(ω)‖, sup
n≥1

inf
k≥1
‖grn(ω)− f r

k (ω)‖
)

is measurable for each r ∈ (0, 1]. Hence D(F̃ (ω), G̃(ω)) =

supk≥1H(F̃ rk(ω), G̃rk(ω)) is measurable, where {rk : k ∈ N} is dense in

(0, 1]. Since F̃ : Ω→ F(X) and G̃ : Ω→ F(X) are integrably bounded,
there exist integrable real-valued functions h1 and h2 on Ω such that for
each ω ∈ Ω, ‖x‖ ≤ h1(ω) for all x ∈ F̃ 0(ω) and ‖x‖ ≤ h2(ω) for all
x ∈ G̃0(ω). Hence

D(F̃ (ω), G̃(ω)) ≤ D(F̃ (ω), 0̃) +D(G̃(ω), 0̃) ≤ h1(ω) + h2(ω)

for each ω ∈ Ω. Therefore D(F̃ , G̃) is integrable on Ω. By Lemma 3.7

H

(
(B)

∫
Ω

F̃ rdµ, (B)

∫
Ω

G̃rdµ

)
≤
∫

Ω

H(F̃ r, G̃r)dµ
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for each r ∈ (0, 1]. Hence

D

(
(B)

∫
Ω

F̃ dµ, (B)

∫
Ω

G̃dµ

)
= sup

r∈(0,1]

H

([
(B)

∫
Ω

F̃ dµ

]r
,

[
(B)

∫
Ω

G̃dµ

]r)
= sup

r∈(0,1]

H

(
(B)

∫
Ω

F̃ rdµ, (B)

∫
Ω

G̃rdµ

)
≤ sup

r∈(0,1]

∫
Ω

H(F̃ r, G̃r)dµ

≤
∫

Ω

sup
r∈(0,1]

H(F̃ r, G̃r)dµ

=

∫
Ω

D(F̃ , G̃)dµ.

Theorem 3.9. Let Fn : Ω→ CWK(X) be a Birkhoff integrable set-
valued mapping for each n ∈ N and let F : Ω → CWK(X). If (Fn)
converges uniformly to F on Ω, then F : Ω → CWK(X) is Birkhoff
integrable on Ω and

lim
n→∞

(B)

∫
Ω

Fndµ = (B)

∫
Ω

Fdµ.

Proof. Since Fn : Ω→ CWK(X) is Birkhoff integrable on Ω for each

n ∈ N, j ◦Fn is Birkhoff integrable on Ω and there exists (B)

∫
Ω

Fndµ ∈

CWK(X) such that j((B)

∫
Ω

Fndµ) = (B)

∫
Ω

j ◦ Fndµ for each n ∈

N. Since (Fn) converges uniformly to F on Ω, (j ◦ Fn) also converges
uniformly to j◦F on Ω. By [1, Theorem 4] j◦F is Birkhoff integrable on

Ω and lim
n→∞

(B)

∫
Ω

j ◦Fndµ = (B)

∫
Ω

j ◦Fdµ. Hence F : Ω→ CWK(X)

is Birkhoff integrable on Ω and
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lim
n→∞

H

(
(B)

∫
Ω

Fndµ, (B)

∫
Ω

Fdµ

)
= lim

n→∞

∥∥∥∥j ((B)

∫
Ω

Fndµ

)
− j

(
(B)

∫
Ω

Fdµ

)∥∥∥∥
∞

= lim
n→∞

∥∥∥∥∫
Ω

j ◦ Fndµ−
∫

Ω

j ◦ Fdµ
∥∥∥∥
∞

= 0.

Thus lim
n→∞

(B)

∫
Ω

Fndµ = (B)

∫
Ω

Fdµ.

A set-valued mapping F : Ω → CWK(X) is said to be absolutely
Birkhoff integrable on Ω if the composition j ◦ F : Ω → `∞(BX∗) is
absolutely Birkhoff integrable on Ω.

From [1, Theorem 7] and [1, Corollary 8], we can obtain the following
two theorems using the same method in the Theorem 3.9.

Theorem 3.10. Let Fn : Ω → CWK(X) be a Birkhoff integrable
set-valued mapping for each n ∈ N and let F : Ω → CWK(X) be a
set-valued mapping such that (Fn) converges to F almost uniformly on
Ω. If there exists an integrable real-valued function h on Ω such that
‖Fn(ω)‖ ≤ h(ω) for all n ∈ N and almost all ω ∈ Ω, then F : Ω →
CWK(X) is absolutely Birkhoff integrable on Ω and

lim
n→∞

(B)

∫
Ω

Fndµ = (B)

∫
Ω

Fdµ.

Theorem 3.11. Let Fn : Ω → CWK(X) be a Birkhoff integrable
set-valued mapping such that j ◦ Fn is measurable for each n ∈ N and
let F : Ω→ CWK(X) be a set-valued mapping such that (Fn) converges
to F almost everywhere on Ω. If there exists an integrable real-valued
function h on Ω such that ‖Fn(ω)‖ ≤ h(ω) for all n ∈ N and almost all
ω ∈ Ω, then F : Ω → CWK(X) is absolutely Birkhoff integrable on Ω
and

lim
n→∞

(B)

∫
Ω

Fndµ = (B)

∫
Ω

Fdµ.

F̃ : Ω → F(X) is said to be j-measurable if j ◦ F̃ r : Ω → `∞(BX∗) is
measurable for each r ∈ (0, 1].
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Theorem 3.12. Let X be separable and let F̃n : Ω → F(X) be a
j-measurable and Birkhoff integrable fuzzy mapping for each n ∈ N. If
(F̃n) converges to F̃ : Ω → F(X) on Ω and there exists an integrable
real-valued function h on Ω such that ‖F̃ 0

n(ω)‖ ≤ h(ω) on Ω for all n ∈ N,
then F̃ : Ω→ F(X) is Birkhoff integrable on Ω and

lim
n→∞

(B)

∫
Ω

F̃ndµ = (B)

∫
Ω

F̃ dµ.

Proof. Since (F̃n) converges to F̃ on Ω, for each ε > 0 and ω ∈ Ω
there exists N ∈ N such that n ≥ N ⇒ D(F̃n(ω), F̃ (ω)) < ε. Hence

‖F̃ 0(ω)‖ = D(F̃ (ω), 0̃) ≤ D(F̃ (ω), F̃N(ω)) +D(F̃N(ω), 0̃)

< ‖F̃N
0
(ω)‖+ ε ≤ h(ω) + ε

for each ω ∈ Ω. Since ε > 0 is arbitrary, ‖F̃ 0(ω)‖ ≤ h(ω) on Ω. Thus
F̃ : Ω→ F(X) is integrably bounded. Since F̃n : Ω→ F(X) is Birkhoff
integrable on Ω for each n ∈ N, F̃ r

n : Ω → CWK(X) is Birkhoff in-
tegrable on Ω for each n ∈ N and r ∈ (0, 1]. Since F̃n : Ω → F(X)
is j-measurable for each n ∈ N, j ◦ F̃ r

n : Ω → `∞(BX∗) is measurable
for each n ∈ N and r ∈ (0, 1]. Since (F̃n) converges to F̃ on Ω, (F̃ r

n)

converges to F̃ r on Ω for each r ∈ (0, 1]. Since ‖F̃n
0
(ω)‖ ≤ h(ω) on Ω

for each n ∈ N, ‖F̃n
r
(ω)‖ ≤ h(ω) on Ω for each r ∈ (0, 1] and n ∈ N.

By Theorem 3.11, F̃ r : Ω → CWK(X) is Birkhoff integrable on Ω for
each r ∈ (0, 1]. Let A ∈ Σ. Then there exists Mr ∈ CWK(X) such that

Mr = (B)

∫
A

F̃ rdµ for each r ∈ (0, 1]. For r1, r2 ∈ (0, 1] with r1 < r2,

F̃ r1(ω) ⊇ F̃ r2(ω) for each ω ∈ Ω. By Lemma 3.5 Mr1 = (B)

∫
A

F̃ r1dµ ⊇

(B)

∫
A

F̃ r2dµ = Mr2 . Let r ∈ (0, 1] and (rn) be a sequence in (0, 1] such

that r1 ≤ r2 ≤ r3 ≤ · · · and lim
n→∞

rn = r. Then F̃ r(ω) = ∩∞n=1F̃
rn(ω)

on Ω. By [10, Lemma 4.2], lim
n→∞

s(x∗, F̃ rn(ω)) = s(x∗, F̃ r(ω)) on Ω for

each x∗ ∈ X∗. Hence lim
n→∞

(j ◦ F̃ rn)(ω) = (j ◦ F̃ r)(ω) on Ω. Since

‖(j ◦ F̃ rn)(ω)‖∞ = ‖F̃ rn(ω)‖ ≤ ‖F̃ 0(ω)‖ ≤ h(ω) on Ω for each n ∈ N, by
[1, Corollary 8] j ◦ F̃ r : Ω → `∞(BX∗) is Birkhoff integrable on Ω and
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lim
n→∞

(B)

∫
A

j ◦ F̃ rndµ = (B)

∫
A

j ◦ F̃ rdµ. For each x∗ ∈ BX∗ ,

|s(x∗,Mrn)− s(x∗,Mr)| =
∣∣∣∣s(x∗, (B)

∫
A

F̃ rndµ)− s(x∗, (B)

∫
A

F̃ rdµ)

∣∣∣∣
=

∣∣∣∣[j((B)

∫
A

F̃ rndµ)](x∗)− [j((B)

∫
A

F̃ rdµ)](x∗)

∣∣∣∣
=

∣∣∣∣[(B)

∫
A

j ◦ F̃ rndµ](x∗)− [(B)

∫
A

j ◦ F̃ rdµ](x∗)

∣∣∣∣
≤
∥∥∥∥(B)

∫
A

j ◦ F̃ rndµ− (B)

∫
A

j ◦ F̃ rdµ

∥∥∥∥
∞
→ 0 as n→∞.

Thus lim
n→∞

s(x∗,Mrn) = s(x∗,Mr) for each x∗ ∈ BX∗ and so

lim
n→∞

s(x∗,Mrn) = s(x∗,Mr) for each x∗ ∈ X∗. By [10, Lemma 4.2],

Mr = ∩∞n=1Mrn . Let M0 = X. By [10, Lemma 4.1], there exists uA ∈
F(X) such that [uA]r = Mr = (B)

∫
F̃ rdµ for each r ∈ (0, 1]. Hence

F̃ : Ω → F(X) is Birkhoff integrable on Ω. By Theorem 3.8 and the
Lebesgue Convergence Theorem,

D

(
(B)

∫
Ω

F̃ndµ, (B)

∫
Ω

F̃ dµ

)
≤
∫

Ω

D(F̃n, F̃ )dµ→ 0 as n→∞.

Thus lim
n→∞

(B)

∫
Ω

F̃ndµ = (B)

∫
Ω

F̃ dµ.
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