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SINGULAR POTENTIAL BIHARMONIC PROBLEM

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the multiplicity of the solutions for a
class of the system of the biharmonic equations with some singular
potential nonlinearity. We obtain a theorem which shows the ex-
istence of the nontrivial weak solution for a class of the system of
the biharmonic equations with singular potential nonlinearity and
Dirichlet boundary condition. We obtain this result by using varia-
tional method and the generalized mountain pass theorem.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let c ∈
R and D be an open subset in Rn with compact complement C = Rn\D,
n ≥ 2. Let G be a C2 function defined on Ω×D and u = (u1, . . . , un). In
this paper we investigate the multiplicity of the solutions for a class of the
system of the nonlinear biharmonic equations with Dirichlet boundary
condition:
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∆2u1(x) + c∆u1(x) =
∂

∂u1

G(x, u(x)) in Ω, (1.1)

∆2u2(x) + c∆u2(x) =
∂

∂u2

G(x, u(x)) in Ω,

...
...

...

∆2un(x) + c∆un(x) =
∂

∂un
G(x, u(x)) in Ω,

u1 = · · · = un = 0, ∆u1 = · · · = ∆un = 0 on ∂Ω,

where graduG(x, u(x)) = (Gu1(x, u), . . . , Gun(x, u)). We assume that
G ∈ C2 satisfies the following conditions:
(G1) There exists R0 > 0 such that

sup{|G(x, u)|+ ‖graduG(x, u)‖Rn| (x, u) ∈ Ω× (Rn\BR0)} < +∞.
(G2) There is a neighborhood U of C in Rn such that

G(x, u) ≥ A

d2(u,C)
for (x, u) ∈ Ω× U,

where d(u,C) is the distance function to C and A > 0 is a constant.
The system (1.1) can be rewritten as

∆2u(x) + c∆u(x) = graduG(x, u(x)) in Ω, (1.2)

u = (0, · · · , 0), ∆u = (0, · · · , 0) on ∂Ω.

Let λj, j ≥ 1, be the eigenvalues and φj, j ≥ 1, be the corresponding
eigenfunctions suitably normalized with respect to L2(Ω) inner product
and each eigenvalue λj is repeated as often as its multiplicity, of the
eigenvalue problem ∆u + λu = 0 in Ω, u = 0 on ∂Ω. The eigenvalue
problem

∆2u+ c∆u = Λu in Ω,

u = 0, ∆u = 0 on ∂Ω,

has also infinitely many eigenvalues Λj = λj(λj − c), j ≥ 1, and cor-
responding eigenfunctions ψj, j ≥ 1. We note that Λ1 < Λ2 ≤ Λ3 . . .,
Λj → +∞.

Our main result is the following:

Theorem 1.1. Assume that λj < c < λj+1, j ≥ 1, and the nonlinear
term G ∈ C2 satisfies the conditions (G1)−(G2). Then the system (1.1)
has at least one nontrivial weak solution.
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For the proof of Theorem 1.1 we approach the variational method
and use the critical point theory. In Section 2, we introduce a Banach
space and the associated functional I of (1.1), and recall the generalized
mountain pass theorem. In Section 3, we prove that I satisfies the
geometric assumptions of the generalized mountain pass theorem and
prove Theorem 1.1.

2. Banach space spanned by eigenfunctions and associated
functional

Let L2(Ω) be a square integrable function space defined on Ω. Any
element u in L2(Ω) can be written as

u =
∑

hkψk with
∑

h2
k <∞.

We define a subspace E of L2(Ω) as follows

E = {u ∈ L2(Ω)|
∑
|Λk|h2

k <∞}.

Then this is a complete normed space with a norm

‖u‖ = [
∑
|Λk|h2

k]
1
2 .

Since λk → +∞ and c is fixed, we have
(i) ∆2u+ c∆u ∈ E implies u ∈ E.
(ii) ‖u‖ ≥ C‖u‖L2(Ω), for some C > 0.
(iii) ‖u‖L2(Ω) = 0 if and only if ‖u‖ = 0,
which is proved in [2].
Let

E+ = {u ∈ E| hk = 0 if Λk < 0},
E− = {u ∈ E| hk = 0 if Λk > 0}.

Then E = E− ⊕E+, for u ∈ E, u = u− + u+ ∈ E− ⊕E+. Let H be the
n cartesian product space of E, i.e.,

H = E × E × . . .× E.
Let H+ and H− be the subspaces on which the functional

u 7→ Q(u) =

∫
Ω

[‖∆u(x)‖2
Rn − c‖∇u(x)‖2

Rn ]dx, u = (u1, . . . , un)

is positive definite and negative definite, respectively. Then

H = H+ ⊕H−.
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Let P+ be the projection from H onto H+ and P− the projection from
H onto H−. The norm in H is given by

‖u‖2 = ‖P+u‖2 + ‖P−u‖2, u = (u1, . . . , un)

where ‖P+u‖2 =
∑n

i=1 ‖P+ui‖2, ‖P−u‖2 =
∑n

i=1 ‖P−ui‖2,

u = (u1, . . . , un).

In this paper we are trying to find the weak solutions

u ∈ C2(Ω, D) ∩ H of the system (1.1), that is, u = (u1 . . . , un) ∈
C2(Ω, D) ∩H such that∫

Ω

[∆u ·∆φ− c∇u · ∇φ]dx−
∫

Ω

graduG(x, u(x)) · φ = 0,

for all φ ∈ C2(Ω, D) ∩H.

Let us introduce an open set of the Hilbert space H as follows

X = {u ∈ H| u(x) ∈ D ⊂ Rn, x ∈ Ω}.

Let us consider the functional on X

I(u) =
1

2

∫
Ω

[‖∆u(x)‖2
Rn − c‖∇u(x)‖2

Rn ]dx−
∫

Ω

G(x, u)dx, (2.1)

= Q(u)−
∫

Ω

G(x, u)dx

=
1

2
‖P+u‖2 − 1

2
‖P−u‖2 −

∫
Ω

G(x, u)dxdt,

where Q(u) = 1
2

∫
Ω

[‖∆u(x)‖2
Rn−c‖∇u(x)‖2

Rn ]dx and ‖u‖2 =
∑n

i=1 ‖ui‖2.
The Euler equation for (2.1) is (1.1). By the following Lemma 2.1,
I ∈ C1(X,R), and so the weak solutions of system (1.1) coincide with
the critical points of the associated functional I(u).

Lemma 2.1. Assume that G satisfies the conditions (G1) − (G2).
Then I(u) is continuous and Fréchet differentiable in X with Fréchet
derivative

DI(u)v =
∫

Ω
[∆u(x)·∆v(x)−c∇u(x)·∇v(x)−graduG(x, u(x))·v(x)]dx

∀v ∈ X. (2.2)

Moreover DI ∈ C. That is, I ∈ C1.
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Proof. First we prove that I(u) is continuous. For u, v ∈ X,

|I(u+ v)− I(u)|

= |1
2

∫
Ω

(∆2(u+ v) + c∆(u+ v)) · (u+ v)dx

−
∫

Ω

G(x, u+ v)dx

−1

2

∫
Ω

(∆2u+ c∆u) · udx+

∫
Ω

G(x, u)dx

= |1
2

∫
Ω

[(∆2u+ c∆u) · v + (∆2v + c∆v) · u+ (∆2v + c∆v) · v]dx

−
∫

Ω

(G(x, u+ v)−G(x, u))dx|.

We have

|
∫

Ω

[G(x, u+ v)−G(x, u)]dx|

≤ |
∫

Ω

[graduG(x, u(x)) · v +O(‖v‖Rn)]dx| = O(‖v‖Rn). (2.3)

Thus we have
|I(u+ v)− I(u)| = O(‖v‖Rn).

Next we shall prove that I(u) is Fréchet differentiable in X. For u, v ∈
X,

|I(u+ v)− I(u)−DI(u)v|

= |1
2

∫
Ω

(∆2(u+ v) + c∆(u+ v)) · (u+ v)dx−
∫

Ω

G(x, u+ v)dx

−1

2

∫
Ω

(∆2u+ c∆u) · udx+

∫
Ω

G(x, u)dx

−
∫

Ω

(∆2u+ c∆u− gradUG(x, u(x))) · vdx|

= |1
2

∫
Ω

[(∆2v + c∆v) · u+ (∆2v + c∆v) · v]dx

−
∫

Ω

[G(x, u+ v)−G(x, u)]dx+

∫
Ω

graduG(x, u(x)) · vdx|.

Thus by (2.3), we have

|I(u+ v)− I(u)−DI(u)v| = O(‖v‖Rn). (2.4)
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Similarly, it is easily checked that I ∈ C1.

Let
X+ = X ∩H+ X− = X ∩H−.

Lemma 2.2. Assume that λj < c < λj+1, j ≥ 1, and G satisfies the
conditions (G1)− (G2). Let {uk} ⊂ X− and uk ⇀ u weakly in X with
u ∈ ∂X. Then I(uk)→ −∞.

Proof. For the proof of the conclusion, it suffices to prove that∫
Ω

G(x, uk(x))dx −→ +∞.

Since G(x, u(x)) is bounded from below, it suffices to prove that there
is a subset Ω̃ of Ω such that∫

Ω̃

G(x, uk(x))dx −→ +∞.

u ∈ ∂X means that there exists x∗ ∈ Ω such that u(x∗) ∈ ∂D. Let us
set

Ωδ(x
∗) = {x ∈ Ω| ‖x− x∗‖Rn < δ}.

By (G1) and (G2), there exists a constant B such that

G(x, u) ≥ A

d2(u,C)
−B.

Thus we have∫
Ωδ(x∗)

G(x, u(x))dx ≥
∫

Ωδ(x∗)

(
A

‖u(x)− u(x∗)‖2
Rn
−B)dx

for all δ > 0. By Schwarz’s inequality, we have

‖u(x)− u(x∗)‖Rn ≤ ‖x− x∗‖
1
2
Rn(

∫
Ω

‖∇u(x)‖2
Rn)

1
2 ≤ δ

1
2 (

∫
Ω

‖∇u(x)‖2
Rn)

1
2 .

Thus we have∫
Ωδ(x∗)

G(x, u(x))dx ≥
∫

Ωδ(x∗)

(
A

δ
∫

Ω
‖∇u(x)‖2

Rn
−B)dx −→∞.

Hence ∫
Ωδ(x∗)

G(x, u(x))dx =∞.

Since the embedding H ↪→ C(Ω, Rn) is compact, we have

max{‖u(x)− uk(x)‖2
Rn| x ∈ Ω} −→ 0 as k →∞.
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Thus by Fatou’s lemma, we have

lim inf

∫
Gδ(x∗)

G(x, uk(x)) ≥
∫
Gδ(x∗)

lim inf G(x, uk(x))

=

∫
Gδ(x∗)

G(x, u(x)) = +∞.

Thus

lim inf

∫
Gδ(x∗)

G(x, uk(x)) = +∞.

Thus for uk ∈ X−,

I(uk) =

∫
Ω

[
1

2
‖∆u(x)‖2

Rn − c‖∇u(x)‖2
Rn −G(x, uk(x))]dx

=
1

2
‖P+uk‖2 − 1

2
‖P−uk‖2 −

∫
Ω

G(x, uk(x))dx

= −1

2
‖P−uk‖2 −

∫
Ω

G(x, uk(x))dx→ −∞,

so we prove the lemma.

Now we recall the generalized mountain pass theorem (cf. Theorem
5.3 in [8]).

Let
Br = {u ∈ X| ‖u‖ ≤ r},
∂Br = {u ∈ X| ‖u‖ = r}.

Theorem 2.1. (Generalized mountain pass theorem)
Let X be a real Banach space with X = V ⊕ W , where V 6= {0}
and is finite dimensional. Suppose that I ∈ C1(X,R), satisfies (P.S.)
condition, and
(i) there are constants ρ, α > 0 and a bounded neighborhood Bρ of 0
such that I|∂Bρ∩W ≥ α, and
(ii) there is an e ∈ ∂B1 ∩W and R > ρ such that if K = (B̄R ∩ V ) ⊕
{re| 0 < r < R}, then I|∂K ≤ 0.
Then I possesses a critical value b ≥ α. Moreover b can be characterized
as

b = inf
γ∈Γ

max
u∈K

I(γ(u)),

where
Γ = {γ ∈ C(K̄,X)| γ = id on ∂K}.
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3. Proof of Theorem 1.1

We shall show that the functional I(u) satisfies the geometric assump-
tions of the generalized mountain pass theorem.

Lemma 3.1. (Palais-Smale condition)
Assume that λj < c < λj+1, j ≥ 1, and G satisfies the conditions (G1)
and (G2). Then I(u) satisfies the (P.S.) condition in X.

Proof. We shall prove the lemma by contradiction. We suppose that
there exists a sequence {uk} ⊂ X satisfying I(uk)→ γ and

DI(uk) = ∆2uk + c∆uk − graduG(x, uk(x)) −→ θ in X, (3.1)

or equivalently

uk − (∆2 + c∆)−1(graduG(x, uk(x))) −→ θ,

where θ = (0, · · · , 0) and (∆2 + c∆)−1 is a compact operator. We claim
that the sequence {uk}, up to a subsequence, converges. It suffices to
prove that the sequence {uk} is bounded in X. By contradiction, we
suppose that ‖uk‖Rn →∞. Then for large k, we have

‖uk‖Rn ≥ R0. (3.2)

It follows from (3.2) that

|
∫

Ω

G(x, uk)dx| ≤ |Ω| sup{|G(x, uk)|| (x, uk) ∈ Ω× (Rn\BR0)}. (3.3)

Let us set wk = uk
‖uk‖

. Then ‖wk‖ = 1, and hence the subsequence {wk},
up to a subsequence, converges weakly to w with ‖w‖ = 1. By (3.1), we
have

0←− DI(uk)uk
‖uk‖H

=

∫
Ω

(∆2wk + c∆wk) · wkdx−
∫

Ω

G(x, uk)

‖uk‖2

= ‖P+wk‖2 − ‖P−wk‖2 −
∫

Ω

G(x, uk)

‖uk‖2
. (3.4)

Letting k →∞ in (3.4), by (3.3), we have

0 = lim
k→∞
‖P+wk‖2 − lim

k→∞
‖P−wk‖2

=

∫
Ω

(∆2w + c∆w) · wdx

= ‖P+w‖2 − ‖P−w‖2. (3.5)
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Thus we have

lim
k→∞
‖P+wk‖2 = ‖P+w‖2, lim

k→∞
‖P−wk‖2 = ‖P−w‖2.

Thus
lim
k→∞
‖wk‖ = ‖w‖

and by (3.5), w is the weak solution of the equation

∆2w + c∆w = 0 in X. (3.6)

Since c is not the eigenvalue, w = (0, · · · , 0) is the only weak solution of
(3.6), which is absurd to the fact that ‖w‖ = 1. Thus {uk} is bounded.
Thus the subsequence, up to a subsequence, uk converges weakly to u in
X. By Lemma 2.2, u ∈ X and that ‖graduG(·, uk)‖ is bounded. Since
(∆2 + c∆)−1 is compact and (3.1) holds, {uk} converges strongly to u.
Thus we prove the lemma.

Let
K = (B̄r ∩X−)⊕ {re| e ∈ B1 ∩X+, 0 < r < R}.

Lemma 3.2. Assume that λj < c < λj+1, j ≥ 1, and G satisfies the
conditions (G1) and (G2). Then there exist sets Sρ ⊂ X+ with radius
ρ > 0, K ⊂ X and constants α > 0 such that
(i) Sρ ⊂ X+ and I|Sρ ≥ α,
(ii) K is bounded and I|∂K ≤ 0,
(iii) Sρ and ∂K link.

Proof. (i) Let us choose u ∈ X+ ⊂ X. Then u(x) ∈ D. By (G1),
G(x, u) is bounded above and there exists a constant C > 0

I(u) =
1

2
‖P+u‖2 − 1

2
‖P−u‖2 −

∫
Ω

G(x, u)dx ≥ 1

2
‖P+u‖2 − C

for C > 0. Then there exist a constant ρ > 0 and α > 0 such that if
u ∈ Sρ ∩X+, then I(u) ≥ α.
(ii) Let us choose e ∈ B1 ∩X+. Let u ∈ B̄r ∩X− ⊕ {re| 0 < r}. Then
u = v + w, v ∈ B̄r ∩X−, w = re. We note that

If v ∈ B̄r ∩X−, then

∫
Ω

[‖∆v(x)‖2
Rn − c‖∇vx‖2

Rn ]dx = −‖P−u‖2 ≤ 0.

By (G2), G(x, v+re) is bounded from below. Thus by Lemma 2.2, there
exists a constant A > 0 such that if u = v + re, then we have

I(u) =
1

2
r2 − 1

2
‖P−v‖2 −

∫
Ω

G(x, v + re)dx.
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≤ 1

2
r2 − 1

2
‖P−v‖2 −

∫
Ω

A

d2(v + re, C)
dx.

We can choose a constant R > r such that if u = v + re ∈ K =
(B̄r ∩ X−) ⊕ {re| e ∈ B1 ∩ X+, 0 < r < R}, then I(u) < 0. Thus we
prove the lemma.

By Lemma 2.1, I(u) is continuous and Fréchet differentiable in X
and moreover DI ∈ C. By Lemma 2.2, If {uk} ⊂ X− and uk ⇀ u
weakly in X with u ∈ ∂X, then I(uk) → −∞. By Lemma 3.1, I(u)
satisfies the (P.S.) condition. By Lemma 3.2, there exist sets Sρ ⊂ X+

with radius ρ > 0, K ⊂ X and constants α > 0 such that I|Sρ ≥ α, K
is bounded and I|∂K ≤ 0, and Sρ and ∂K link. By the critical point
theorem, I(u) possesses a critical value c ≥ α. Thus (1.1) has at least
one nontrivial weak solution. Thus we prove Theorem 1.1
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