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A REFINED ENUMERATION OF p-ARY LABELED

TREES

Seunghyun Seo† and Heesung Shin‡

Abstract. Let T (p)
n be the set of p-ary labeled trees on {1, 2, . . . , n}.

A maximal decreasing subtree of an p-ary labeled tree is defined by
the maximal p-ary subtree from the root with all edges being de-

creasing. In this paper, we study a new refinement T (p)
n,k of T (p)

n ,
which is the set of p-ary labeled trees whose maximal decreasing
subtree has k vertices.

1. Introduction

Let p be a fixed integer greater than 1. A p-ary tree T is a tree such
that:

(i) Either T is empty or has a distinguished vertex r which is called
the root of T , and

(ii) T−r consists of a weak ordered partition (T1, . . . , Tp) of p-ary trees.
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A 2-ary(resp. 3-ary) tree is called binary(resp. ternary) tree. Figure 1
exhibits all the ternary tree with 3 vertices. A full p-ary tree is a p-
ary tree, where each vertex has either 0 or p children. It is well known
(see [6, 6.2.2 Proposition]) that the number of full p-ary trees with n
internal vertices is given by the nth order-p Fuss-Catalan number [2,

p. 361] C
(p)
n = 1

pn+1

(
pn+1
n

)
. Clearly a full p-ary tree T with m internal

vertices corresponds to a p-ary tree with m vertices by deleting all the

leaves in T , so the number of p-ary trees with n vertices is also C
(p)
n .

Figure 1. All 12 ternary trees with 3 vertices

An p-ary labeled tree is a p-ary tree whose vertices are labeled by dis-
tinct positive integers. In most cases, a p-ary labeled tree with n vertices
is identified with an p-ary tree on the vertex set [n] := {1, 2, . . . , n}. Let

T (p)
n be the set of p-ary labeled trees on [n]. Clearly the cardinality of

T (p)
n is given by

(1) |T (p)
n | = n!C(p)

n = (pn)(n−1),

where m(k) := m(m− 1) · · · (m− k + 1) is a falling factorial.

For a given p-ary labeled tree T , a maximal decreasing subtree of T
is defined by the maximal p-ary subtree from the root with all edges
being decreasing, denoted by MD(T ). Figure 2 illustrates the maximal

decreasing subtree of a given ternary tree T . Let T (p)
n,k be the set of p-

ary labeled trees on [n] with its maximal decreasing subtree having k
vertices.

In this paper we present a formula for |T (p)
n,k |, which makes a refined

enumeration of T (p)
n , or a generalization of equation (1). Note that a

similar refinement for rooted labeled trees and ordered labeled trees were
done before (see [4,5]), but the p-ary case is much more complicated and
has quite different features.
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Figure 2. The maximal decreasing subtree of the ternary
labeled tree T

2. Main results

From now on we will consider labeled trees only. So we will omit the

word “labeled”. Recall that T (p)
n,k is the set of p-ary trees on [n] with

its maximal decreasing ordered subtree having k vertices. Let Y(p)
n,k be

the set of p-ary trees T on [n], where T is given by attaching additional

(n−k) increasing leaves to a decreasing tree with k vertices. Let F (p)
n,k be

the set of (non-ordered) forests on [n] consisting of k p-ary trees, where
the k roots are not ordered. In Figure 3, the first two forests are the

same, but the third one is a different forest in F (2)
4,2 .

1 1 1

3 3 32 2 2

4 4 4

= 6=

Figure 3. Forests in F (3)
4,2

Define the numbers

t(n, k) =
∣∣∣T (p)

n,k

∣∣∣ ,
y(n, k) =

∣∣∣Y(p)
n,k

∣∣∣ ,
f(n, k) =

∣∣∣F (p)
n,k

∣∣∣ .
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We will show that a p-ary tree can be “decomposed” into a p-ary tree

in
⋃

n,k Y
(p)
n,k and a forest in

⋃
n,k F

(p)
n,k. Thus it is important to count the

numbers y(n, k) and f(n, k).

Lemma 2.1. For 0 ≤ k < n, the number y(n, k) satisfies the recursion:

y(n + 1, k + 1) =

p∑
m=0

(
n

m

)
p(m) (kp− n + m + 1) y(n−m, k)(2)

with the following boundary conditions:

y(n, n) =
n−1∏
j=0

(1 + (p− 1)j) for n ≥ 1(3)

y(n, k) = 0 for k < max

(
n− 1

p
, 1

)
.(4)

Proof. Consider a tree Y in Y(p)
n+1,k+1. The tree Y with n + 1 vertices

consists of its maximal decreasing tree with k+1 vertices and the number
of increasing leaves is n− k. Note that the vertex 1 is always contained
in MD(Y ).

If the vertex 1 is a leaf of Y , consider the tree Y ′ by deleting the
leaf 1 from Y . The number of vertices in Y ′ and MD(Y ′) are n and
k, respectively. So the number of possible trees Y ′ is y(n, k). Since we
cannot attach the vertex 1 to n − k increasing leaves of Y ′, there are
kp− (n− 1) ways of recovering Y . Thus the number of Y with the leaf
1 is

(5) (kp− n + 1) · y(n, k).

If the vertex 1 is not a leaf of Y , then the vertex 1 has increasing
leaves `1, . . . , `m, where 1 ≤ m ≤ p. Consider the tree Y ′′ obtained by
deleting `1, . . . , `m from Y . Clearly 1 is a leaf of Y ′′ and the number of
vertices in Y ′′ and MD(Y ′′) are n−m+1 and k+1, respectively. Thus by
(5), the number of possible trees Y ′′ is (kp− (n−m) + 1) · y(n−m, k).
To recover Y is to relabel all the vertices except 1 of Y ′′ with the label
set {2, 3, . . . , n + 1} \ {`1, . . . , `m} and to attach the leaves `1, . . . , `m to
the vertex 1 of Y ′′. Clearly `1, . . . , `m is a subset of {2, 3, . . . , n + 1}. It
is obvious that a way of attaching `1, . . . , `m to vertex 1 can be regarded
as an injection from `1, . . . , `m to [p]. Thus the number of Y without the
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n\k 0 1 2 3 4 5 6 7 8 9

0 1
1 0 1
2 0 2 2
3 0 2 10 6
4 0 0 24 56 24
5 0 0 24 256 360 120
6 0 0 0 640 2672 2640 720
7 0 0 0 720 11824 28896 21840 5040
8 0 0 0 0 30464 196352 330624 201600 40320
9 0 0 0 0 35840 857728 3177600 4032000 2056320 362880

Table 1. y(n, k) with p = 2

leaf 1 is

(6)

(
n

m

)(
p

m

)
m! (kp− (n−m) + 1) · y(n−m, k).

Since m may be the number from 1 to p and substituting m = 0 in (6)
yields (5), we have the recursion (2).

Since Y(p)
n,n is the set of decreasing p-ary trees on [n], the equation (3)

holds (see [1]). If the inequality pk − (k − 1) < n− k holds, Y(p)
n,k should

be empty. For n ≥ 1 and k = 0, Y(p)
n,k is also empty. Thus the equation

(4) also holds.

The table for y(n, k) with p = 2 is shown in Table 1.
Now we calculate f(n, k) which is the number of forests on [n] con-

sisting of k p-ary trees, where the k components are not ordered. Here
we use the convention that the empty product is 1.

Lemma 2.2. For 0 ≤ k ≤ n, we have

f(n, k) =

(
n

k

)
pk

n−k−1∏
i=1

(pn− i) if n > k,(7)

else f(n, n) = 1.

Proof. Consider a forest F in F (p)
n,k. The forest F consists of (non-

ordered) p-ary trees T1, . . . , Tk with roots r1, r2, . . . , rk, where r1 < r2 <
· · · < rk. The number of ways for choosing roots r1, r2, · · · , rk from [n] is
equal to

(
n
k

)
. From the reverse Prüfer algorithm (RP Algorithm) in [3],
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the number of ways for adding n − k vertices successively to k roots
r1, r2, · · · , rk is equal to

pk(pn− 1)(pn− 2) · · · (pn− n + k + 1)

for 0 < k < n, thus the equation (7) holds. For 0 = k < n, F (p)
n,0 is

empty, so f(n, 0) = 0 included in (7). For 0 ≤ k = n, F (p)
n,n is the set of

forests with no edges, so f(n, n) = 1.

Since the number y(n, k) is determined by the recurrence relation
(2) in Lemma 2.1, we can count the number t(n, k) with the following
theorem.

Theorem 2.3. For n ≥ 1, we have

t(n, k) =
n∑

m=k

(
n

m

)
m− k

n− k
(pn− pk)(n−m) y(m, k) if 1 ≤ k < n,(8)

else t(n, n) =
∏n−1

j=0 (pj − j + 1), where a(`) := a(a− 1) · · · (a− ` + 1) is
a falling factorial.

Proof. Given a p-ary tree T in T (p)
n,k , let Y be the subtree of T consist-

ing of MD(T ) and its increasing leaves. If Y has m vertices, then Y is a
subtree of T with (m− k) increasing leaves. Also, the induced subgraph
Z of T generated by the (n − k) vertices not belonging to MD(T ) is a
(non-ordered) forest consisting of (m − k) p-ary trees whose roots are
increasing leaves of Y . Figure 4 illustrates the subgraph Y and Z of a
given ternary tree T .

Now let us count the number of p-ary trees T ∈ T (p)
n,k with |V (Y )| = m

where V (Y ) is the set of vertices in Y . First of all, the number of ways
for selecting a set V (Y ) ⊂ [n] is equal to

(
n
m

)
. By attaching (m − k)

increasing leaves to a decreasing p-ary tree with k vertices, we can make
a p-ary trees on V (Y ). So there are exactly y(m, k) ways for making
such a p-ary subtree on V (Y ). Since all the roots of Z are determined

by Y , by the definition of F (p)
n,k and Lemma 2.2, the number of ways for

constructing the other parts on V (T ) \ V (MD(T )) is equal to

f(n− k,m− k)

/(
n− k

m− k

)
=

m− k

n− k
(pn− pk)(n−m).

Since the range of m is k ≤ m ≤ n, the equation (8) holds.
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Figure 4. Decomposition of T into Y and Z

n\k 0 1 2 3 4 5 6 7 n!Cn

0 1 1
1 0 1 1
2 0 2 2 4
3 0 14 10 6 30
4 0 152 104 56 24 336
5 0 2240 1504 816 360 120 5040
6 0 41760 27744 15184 6992 2640 720 95040
7 0 942480 621936 342768 162240 65856 21840 5040 2162160

Table 2. t(n, k) with p = 2

Finally, T (p)(n, n) is the set of decreasing p-ary trees on [n], so

t(n, n) = y(n, n) =
n−1∏
j=0

(pj − j + 1)

holds for n ≥ 1.

The sequence t(n, k) with p = 2 is listed in Table 2. Note that each row

sum is equal to n!C
(p)
n with p = 2.

Remark. Due to Lemma 2.1 and Theorem 2.3, we can calculate
t(n, k) for all n, k. In particular we express t(n, k) as a linear combination
of y(k, k), y(k + 1, k), . . . , y(n, k). However a closed form, a recurrence
relation, or a (double) generating function of t(n, k) have not been found
yet.
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reverse Prüfer algorithm, J. Combin. Theory Ser. A. 114 (7) (2007), 1357–1361.

[4] Seunghyun Seo and Heesung Shin, On the enumeration of rooted trees with fixed
size of maximal decreasing trees, Discrete Math. 312 (2) (2012), 419–426.

[5] Seunghyun Seo and Heesung Shin, A refinement for ordered labeled trees, Korean
J. Math. 20 (2) (2012), 255–261.

[6] Richard P. Stanley, Enumerative combinatorics. Vol. 2, volume 62 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey
Fomin.

Department of Mathematics Education
Kangwon National University
Chuncheon 200-701, Korea
E-mail : shyunseo@kangwon.ac.kr

Department of Mathematics
Inha University
Incheon 402-751, Korea
E-mail : shin@inha.ac.kr


