DOI QR코드

DOI QR Code

Structural Analysis of the Cu-binding Site in the [Cu·dCMP·dCMP-H]1- Complex

  • Jung, Sang-Mi (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Kim, Ho-Tae (Department of Applied Chemistry, Kumoh National Institute of Technology)
  • 투고 : 2013.11.18
  • 심사 : 2013.12.04
  • 발행 : 2013.12.30

초록

The Cu-binding site in the $[Cu{\cdot}dCMP{\cdot}dCMP-H]^{1-}$ complex was investigated. The tandem mass (MS/MS) spectra of the [$[Cu{\cdot}dCMP{\cdot}dCMP-H]^{1-}$ parent ion showed $[dCMP{\cdot}Cu{\cdot}H_2PO_4+CONH]^{1-}$ fragment ions. Therefore, we propose that the Cu cation is simultaneously coordinated to the phosphate site and cytosine moiety in the stable geometry of the $[Cu{\cdot}dCMP{\cdot}dCMP-H]^{1-}$ complex. Three geometries for the complex were considered in an attempt to optimize the structure of the $[Cu{\cdot}dCMP{\cdot}dCMP-H]^{1-}$ complex. The ab initio calculations were performed at the $B3LYP/6-311G^{**}$ level.

키워드

참고문헌

  1. Andrushchenko, V.; Van De Sande, J. H.; Wieser, H. Biopolymers 2003, 72, 374. https://doi.org/10.1002/bip.10439
  2. Gao, Y.-G.; Sriram, M.; Wang, A. H.-J. Nucleic Acids Res. 1993, 21, 4093. https://doi.org/10.1093/nar/21.17.4093
  3. Liu, J.; Lu, T. B.; Deng, H.; Ji, L. N.; Qu, L. H.; Zhou, H. Transition Met. Chem. 2003, 28, 116. https://doi.org/10.1023/A:1022543601034
  4. Eichhorn, G. L. Nature 1962, 194, 474. https://doi.org/10.1038/194474a0
  5. Atwell, S.; Meggers, E.; Spraggon, G.; Schultz, P. G. J. Am. Chem. Soc. 2001, 123, 12364. https://doi.org/10.1021/ja011822e
  6. Andrushchenko, V. Bour, P. J. Phys. Chem. B, 2009, 113, 283. https://doi.org/10.1021/jp8058678
  7. Fuente, M.; Cozar, O.; David, L.; Navarro, R.; Hernanz, A.; Bratu, I. Spectrochim. Acta part A 1997, 53, 637. https://doi.org/10.1016/S1386-1425(96)01860-4
  8. Aoki, K. Biochim. Biophys. Acta 1976, 447, 379. https://doi.org/10.1016/0005-2787(76)90061-7
  9. Terron, A. Comments Inorg. Chem. 1993, 14, 63. https://doi.org/10.1080/02603599308048657
  10. Song, B.; Feldmann, G.; Bastian, M.; Lippert, B.; Sigel, H. Inorg. Chim. Acta 1995, 235, 99. https://doi.org/10.1016/0020-1693(95)90050-G
  11. Salpin, J.-Y.; Gamiette, L.; Tortajada, J.; Besson, T.; Maitre, P. Int. J. Mass Spectrom. 2011, 304, 154. https://doi.org/10.1016/j.ijms.2010.07.011
  12. Gao, Y.-G. ; Sriram, M.; Wang, A. H. -J. Nucleic Acids Res. 1993, 21, 4093. https://doi.org/10.1093/nar/21.17.4093
  13. Blazie, B.; Turel, I.; Bukovec, N.; Bukovec, P.; Lazarini, F. J. Inorg. Biochem. 1993, 51, 737. https://doi.org/10.1016/0162-0134(93)85006-T
  14. Liu, J.; Lu, T. B.; Deng, H.; Ji, L. N.; Qu, L. H.; Zhou, H. Transition Met. Chem. 2003, 28, 116. https://doi.org/10.1023/A:1022543601034
  15. Kim, M.-J.; Kim, B.-R.; Kim, H.-T. Chem. Phys. Lett. 2011, 505, 57. https://doi.org/10.1016/j.cplett.2011.02.021
  16. Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. J. Phys. Chem. A 2007, 111, 10439. https://doi.org/10.1021/jp0734474
  17. Strittmatter, E. F.; Schnier, P. D.; Klassen, J. S.; Williams, E. R. J. Am. Soc. Mass Spectrom. 1999, 10, 1095. https://doi.org/10.1016/S1044-0305(99)00087-2
  18. Luck, G.; Zimmer, C. Eur. J. Biochem. 1972, 29, 528. https://doi.org/10.1111/j.1432-1033.1972.tb02018.x