Abstract
One issue with keyword search in general is its ambiguity which can ultimately impact the effectiveness of the search in terms of the quality of the search results. This ambiguity is primarily due to the ambiguity of the contextual meaning of each term in the query. In addition to the query ambiguity itself, the relationships between the keywords in the search results are crucial for the proper interpretation of the search results by the user and should be clearly presented in the search results. We address the keyword search ambiguity issue by adapting some of the existing approaches for keyword mapping from the query terms to the schema terms/instances. The approaches we have adapted for term mapping capture both the syntactic similarity between the query keywords and the schema terms as well as the semantic similarity of the two and give better mappings and ultimately 50% raised accurate results. Finally, to address the last issue of lacking clear relationships among the terms appearing in the search results, our system has leveraged semantic web technologies in order to enrich the knowledgebase and to discover the relationships between the keywords.
키워드의 모호성은 효율적인 키워드 탐색에 있어서 일반적인 이슈가 되어왔는데, 이 모호성은 탐색결과의 신뢰성에 큰 영향을 줄 수 있으며, 기본적으로 질의에 사용된 용어 자체가 가지는 문맥상 의미의 모호함에 기인한다. 질의 자체의 모호함뿐만 아니라, 사용자들이 그 탐색 결과를 적절하게 해석하기 위해 결과에 나타나는 키워드간의 관계도 중요하므로 명확하게 명시 되어야 한다. 이 논문에서는 기존의 질의 용어와 스키마 용어/인스턴스간의 키워드 매핑기법을 적용하여 키워드 탐색의 모호성을 해결한다. 용어간의 매핑에서는 질의 키워드와 스키마 용어간의 구문적 유사성은 물론 시맨틱 유사성까지 고려하기 때문에 기존의 시스템에 비해 매핑과 정밀도가 50% 이상 상승하는 결과를 얻을 수 있다. 탐색결과에 나타나는 용어간의 불분명한 관계를 점 더 명확하게 나타내기 위하여 시맨틱 웹 기술을 적용하여 키워드간의 의미 있는 관계를 더 많이 지식베이스 내에서 찾을 수 있도록 하였다.