DOI QR코드

DOI QR Code

Nano-Composite's Mechanical and Radioactive Barrier Characteristics by Nano Size CNT & Graphite Particles Alignment

CNT와 Graphite 나노/마이크로 입자 배열에 의한 나노복합재의 제작과 기계적 강성 및 방사능 차폐 특성 평가

  • Received : 2013.07.12
  • Accepted : 2013.12.22
  • Published : 2013.12.31

Abstract

Carbon particle based nanocomposites have been studied. Nanocomposites containing CNT and graphite particles were manipulated by aligning the micro/nano-size particles with electric field. Electric field is applied to the suspension of epoxy matrix and particulate inclusions in order to align them along the direction of the electric field. Particles aligned in a uniform direction act as a fiber in a CFRP composite. The mechanical strength and physical characteristics highly depend on particles' distribution pattern and amount. In this study, the characteristics of radioactive barrier are emphasized, which has been rarely discussed in the literature. A number of sample coupons were tested to verify their performance. The procedure of manufacturing nanocomposites by means of extremely small size particle alignment is presented in sequence. Several physical and structural performances of composites containing aligned and randomly distributed particles were compared. The results show particle alignment is very effective to enhance directional strength and radioactive barrier performance.

복합재료 중 가장 많이 사용되는 탄소계 나노복합재의 성능 향상에 대한 연구가 수행되었다. 나노 사이즈의 탄소나노튜브(CNT)와 마이크로 사이즈의 그레파이트(Graphite) 입자를 일정한 형태로 배열하여 나노복합재를 제작하였다. 입자를 배열하기 위하여 전기장을 활용하였다. 일정한 방향 혹은 형태로 배열된 입자는 에폭시 기지 속에서 섬유강화 복합재 처럼 일정한 방향으로 강성의 향상을 나타낸다. 복합재의 구조적 강성이나 물리적 특성은 강화 입자의 배열상태에 따라 매우 달라지게 된다. 본 연구에서는 특히 탄소나노튜브와 그레파이트 강화입자의 전기장 배열에 의해서 만들어진 나노복합재의 강성 및 방사능 차폐특성을 규명하였다. 전기장에 의한 입자의 배열로 만들어진 탄소계 복합재는 구조적 성능뿐만 아니라 물리적인 방사능 차폐에서도 훌륭한 특성을 나타내었다.

Keywords

References

  1. Shkel, Y.M., and Klingenberg, D.J., "A Continuum Approach to Electrorheology," Journal of Rheology, Vol. 43, 1999, pp. 1307-1322. https://doi.org/10.1122/1.551023
  2. Kim, G.H., and Shkel, Y.M., "Sensing Shear Strains with Electrostriction Effect in Solid Electrorheological Composites," Journal of Intelligent Material Systems and Structures, Vol. 13, 2002, pp. 479-483. https://doi.org/10.1106/104538902030335
  3. Shkel, Y.M., and Ferrier, N.J., "Electrostriction Enhancement of Solid-state Capacitance Sensing," IEEE-ASME T Mech, Vol. 8, No. 3, 2003, pp. 318-325. https://doi.org/10.1109/TMECH.2003.816805
  4. Klingenberg, D.J., and Zukoski, C.F., Studies on the Steady- Shear Behavior of Electrorheological Suspensions, Langmuir, 1990.
  5. Arp, P.A., Foister, R.T., and Mason, S.G., "Some Electrohydrodynamic Effects in Fluid Dispersions," Advances in Colloid and Interface Science, Vol. 12, 1980, pp. 295-356. https://doi.org/10.1016/0001-8686(80)80013-3
  6. Martin, J.E., and Anderson, R.A., "Chain Model of Electrorheology," Journal of Chemical Physics, Vol. 104, 1996, pp. 4814-4827. https://doi.org/10.1063/1.471176
  7. Park, C., and Robertson, R.E., "Alignment of Particles by an Electric Field," Journal of Material Science and Engineering: AFig Structure, Vol. 2, 1998, pp. 295-311.
  8. Maxwell, J.C., Electricity and Magnetism, Clarendon Press, London, 1904.
  9. Jones, T.B., "Dielectrophoretic Force Calculation," Journal of Electrostatics, Vol. 6, 1979, pp. 69-82. https://doi.org/10.1016/0304-3886(79)90025-1
  10. Stratton, J.A., Electromagnetic theory, McGraw-Hill, New York, 1941.
  11. Landau, L.D., and Lifshitz, E.M., Electrodynamics of Continuous Media, Pergamon, New York, 1984.
  12. Levich, V.G., Physico-Chemical Hydrodynamics, Prentice-Hall, N.J., 1962.
  13. Sauer, F.A., and Schlogl, R.W., Torques Exerted on Cylinders and Spheres by External Electromagnetic Fields, Plenum, New York, 1985.
  14. Martin, J.E., and Anderson, R.A., "Electrostriction in Field- Structured Composites: Basis for a Fast Artificial Muscle," Journal of Chemical Physics, Vol. 111, No. 9, 1999, pp. 4273-4280. https://doi.org/10.1063/1.479725
  15. Norman, D.A., and Robertson, R.E., "Rigid-Particle Toughening of Glassy Polymers," Polymer, Vol. 44, 2003, pp. 2351-2362. https://doi.org/10.1016/S0032-3861(03)00084-3
  16. Pohl, H.A., "Dielectrophoresis," Cambridge University Press, Cambridge, 1978.
  17. Lees, J.K., "A Study of the Tensile Modulus of Short Fiber Reinforced Plastics," Polymer Engineering & Science, Vol. 8, No. 3, 1968, pp. 195-201. https://doi.org/10.1002/pen.760080304
  18. Bonnecaze, R.T., and Brady, J.F., "Dynamic Simulation of an Electrorheological Fluid," Journal of Chemical Physics, Vol. 96, 1992, pp. 2183-2202. https://doi.org/10.1063/1.462070
  19. Wang, Z.J., Kwon, D.J., Gu, G.Y., and Park, J.M., "Interfacial Properties of Gradient Specimen of CNT-Epoxy Nanocomposites using Micromechanical Technique and Wettability," Journal of the Korean Society for Composite Materials, Vol. 24, No. 1, 2011, pp. 45-50. https://doi.org/10.7234/kscm.2011.24.1.045
  20. Lee, W.J., Lee, S.E., and Kim, C.G., "A Study on Mechanical Properties of MWNT/PMMA Nanocomposites Fabricated by Injection Molding," Journal of the Korean Society for Composite Materials, Vol. 17, No. 4, 2004, pp. 47-52.
  21. Ryu, K.S., Shin, G.H., Kim, H.M., and Kim, H.J., "Single Event Upset Measurements of Memory Chips for the Langmuir Probe on STSAT-2," Journal of the Korean Physical Society, Vol. 52, No. 3, 2008, pp. 853-857. https://doi.org/10.3938/jkps.52.853

Cited by

  1. Effectiveness evaluation of self-produced micro- and nanosized tungsten materials for radiation shielding with diagnostic X-ray imaging system vol.172, pp.None, 2013, https://doi.org/10.1016/j.ijleo.2018.07.107