

Feeder Re-assign Problem in a Surface Mount
Device with a Piano-Type Multi-Headed Gantry

Hyunchul Tae, Byung-In Kim*
Department of Industrial and Management Engineering, Pohang University of Science and Technology

(POSTECH), Pohang, Korea

(Received: January 28, 2013 / Revised: September 16, 2013 / Accepted: November 14, 2013)

ABSTRACT
A surface mount device (SMD) assembles electronic components on printed circuit boards (PCB). Since a component
assembly process is a bottleneck process in a PCB assembly line, making an efficient SMD plan is critical in increasing
the PCB assembly line productivity. Feeder assignment is an important part of the SMD plan optimization. In this paper,
we propose a feeder re-assign improvement algorithm for a specific type of SMD machine with a piano type multi-head
gantry. Computational results on some real-world benchmark data sets show the effectiveness of our proposed algorithm.

Keywords: Surface Mount Device, PCB Assembly, Feeder Assignment, Optimization, Improvement

* Corresponding Author, E-mail: bkim@postech.ac.kr

1. INTRODUCTION

Surface mount technology (SMT) is a printed cir-
cuit board (PCB) assembly technology used in many
electronics manufacturing factories. A typical SMT as-
sembly line has three main processes: solder paste, com-
ponents placement (assembly), and re-flow process. The
components placement process is conducted by a set of
surface mount device (SMD) machines which place the
components on PCB. Time studies and simulation re-
sults on SMT factories consistently show that the com-
ponents placement process is a bottleneck process, thus
increasing the productivity of components placement
process is critical in increasing the productivity of the
SMT assembly line. Increasing the number of SMD
machines is a direct way of increasing the productivity
of components placement process, but the expensive
unit price of the SMD machine makes it difficult for
factory owners to buy new SMD machines (Tirpak,
1993). Instead, developing an efficient algorithm for the
SMD optimization problem is an easier option for fac-
tory owners to increase the productivity of components
placement process.

The processing time of the components placement
process can be divided into pick-up, place and nozzle

change. In several previous papers that attempted to
minimize the processing time, some authors (Sun et al.,
2005; Wilhelm et al., 2006) focus on minimizing pick-up
time, others (Duman and Or, 2004; Leipala and Nevala-
inen, 1989) focus on place time, and still others (Ayob
and Kendall, 2004, 2005) focus on nozzle change time.
In this paper, we propose a feeder re-assign improve-
ment algorithm to minimize the pick-up time.

2. SMD MACHINE DESCRIPTION

The nature of the SMD optimization problem is
highly dependent on the characteristic of target SMD
machine because the problem’s formulation, size, and
complexity are determined by the SMD machine’s char-
acteristic (Duman and Or, 2004). Thus, a tailored algo-
rithm is required for each specific SMD machine type.
In the current SMD market, there are many different
types of SMD machines such as the single gantry system
or dual gantry system, piano type or turret type and
multi-headed or single-headed (Ayob and Kendall, 2008).
This paper considers a specific SMD machine with a
piano-type multi-headed single-gantry. Its schematic view
is described in Figure 1.

Industrial Engineering
& Management Systems
Vol 12, No 4, December 2013, pp.330-335 http://dx.doi.org/10.7232/iems.2013.12.4.330
ISSN 1598-7248│EISSN 2234-6473│ © 2013 KIIE

Feeder Re-assign Problem in a Surface Mount Device with a Piano-Type Multi-Headed Gantry
Vol 12, No 4, December 2013, pp.330-335, © 2013 KIIE 331

Figure 1. A multi-headed piano-type surface mount device

machine with a single-gantry. PCB: printed cir-
cuit board, ANC: automatic nozzle changer.

Our target SMD machine has one gantry (single-

gantry), which can move in x, y, z directions to pick and
place components or change nozzles. The gantry has six
heads (multi-head) and the gap between neighboring
heads is 16 mm. Each head can pick and place a compo-
nent one at a time if the head is equipped with a proper
nozzle for the component. The nozzles are provided by
an automatic nozzle changer (ANC), and a head can change
its currently equipped nozzle with another one through
the ANC. A component is provided by a feeder and the
feeder should be assigned into a feeder slot. The SMD
machine has one feeder base and the feeder base is con-
stituted of sixty feeder slots.

The SMD machine uses two types of feeders: tray
feeder type and tape feeder type. Since the locations of
the tray feeders are assumed to be fixed by users, we
consider only tape feeders in this paper, and the word
‘feeder’ refers to ‘tape feeder’ from now on. The width
of a feeder slot is 8 mm and each feeder slot has its own
index from 1 to 60. Feeders have different widths, such
as 8, 12, 16, and 24 mm depending on their component
size while they have identical height length. Figure 2
describes feeders with different widths and how the
feeders with different widths can be assigned into feeder
slots. The pick-up point is the place where the gantry’s
head picks up the component from the feeder. Note that
all the feeders have the same y-coordinate of their pick-
up points.

Our SMD machine can pick several components
simultaneously from feeders. Wilhelm et al. (2006)
called this kind of pick-up as “a gang pick.” The gang
pick requires specific condition to happen. The gang
pick is possible when the distances between the feeders
of pick-up components are the same as the distances
between the pick-up heads. Thus, the feeders should be
arranged carefully in order to realize efficient pick-ups.

Figure 2. Feeders with various widths.

3. SMD OPTIMIZATION PROBLEM

A PCB has placement points P = {p1, p2, …, pn} on
its surface, and each placement point has its own x-y
coordinates and component type ci ∈ C = {c1, c2, …,
cm}. A component of type ci is provided by a feeder fdi,
and there exists at least one feeder fdi for type ci. Note
that in our case, there could be more than one feeder fdi
for type ci. Every placement point on PCB should be
placed with the proper component by the SMD machine.
Since the SMD machine’s gantry has six heads, up to six
components can be picked and placed by a single trip of
the gantry. We call the trip “cycle”, denoted by l and a
series of such cycles that fulfills the placement require-
ment completely a “SMD plan”, denoted by L = {l1, …, lk}.

A cycle consists of three sequential steps of a gan-
try: nozzle change, components pick-up and components
placement steps. The cycle time is the time required to
complete the three steps of the cycle and equals to the
sum of nozzle change time, components pick-up time,
and components placement time. Nozzle change time is
the time required to change the nozzles of the heads of a
gantry. The nozzle change step can be skipped if nozzle
change is not required for the cycle. Pick-up time means
the required time of a cycle to pick components from
feeders. The placement time is the required time of a
cycle to place components onto the placements. The SMD
plan time equals to the sum of cycle times of all the cy-
cles in the SMD plan.

An SMD optimization problem is the problem of
finding the SMD plan and its corresponding feeder as-
signment with the minimum SMD plan cycle time.
Since the SMD optimization problem is a hard combina-
torial problem, many researchers have solved it by di-
viding it into sub-problems (Lee et al., 2000; Van Laar-
hoven and Zijm, 1993; Wilhelm and Tarmy, 2003). The
SMD optimization problem can be divided into two ma-
jor sub-problems: a feeder assigning problem and a cycle
generation problem. The two sub-problems are highly
related so one should solve the two sub-problems toge-
ther to get the optimal solution of the SMD optimization
problem.

However, solving the two sub-problems together
have never been attempted because the SMD optimiza-
tion problem and sub-problems are hard combinatorial
optimization problems, and taking the problems together
is too difficult (Van Laarhoven and Zijm, 1993). Instead,
sequential approaches have been used to solve the SMD
optimization problems (Lee et al., 2000; Van Laarhoven
and Zijm, 1993). A sequential approach is a method to
solve a complicated problem by solving its sub-problems
sequentially. For example, a solution for SMD optimiza-
tion problem can be obtained by solving the feeder as-
signment problem first and then the cycle generation
problem.

The sequential approach promises the reasonable
computational cost but its solution may be a local opti-
mum. To overcome the local optimality, Grunow et al.

Tae and Kim: Industrial Engineering & Management Systems
Vol 12, No 4, December 2013, pp.330-335, © 2013 KIIE 332

(2004) adopted an improving method to the sequential
approach. We solved the SMD optimization problem
with the following consequent procedures as Grunow et
al. (2004) did: 1) an initial feeder assignment procedure,
2) a cycle construction procedure, and 3) an improve-
ment procedure. The initial feeder procedure aims to
find feasible feeder assignment so that every placement
can be placed. In this procedure, only one feeder for one
component is allowed to be assigned into a feeder base
even though the component has more than one feeder.
With the assumption that every head can reach every
placement and feeder slot’s pick-up point, this rule (one
feeder for one component) does not cause infeasibility.

The cycle construction procedure makes a series of
cycles or a SMT plan based on initially assigned feeders
with the minimum possible SMT plan time. This proce-
dure constitutes four sub-problems: a placement point
assignment problem, a feeder selection problem, a pick-
up sequencing problem, and a placement sequencing
problem. The improvement procedure tries to improve
the SMD plan with two procedures: a placement exchange
procedure and a feeder re-assigning procedure. The pla-
cement exchange procedure tries to change placements
within a cycle or between the cycles the SMD plan, and
the feeder re-assigning procedure tries to change feeder
positions or to assign duplicate feeders.

Although this paper focuses on the feeder re-assign-
ment problem, we explain the sub-problems of the cycle
construction procedure since they are highly interrelated
with the feeder re-assignment procedure. The placement
point assignment problem assigns all placement points
to a 6-column matrix (if a gantry has 6 heads) as an ex-
ample is shown in Figure 3. In Figure 3, there are three
matrixes, and each matrix denotes a SMT plan. Each
plan has rows, and each row means a cycle, and the or-
der of rows is the order of cycles in descending direction.
Each column corresponds to a head, and the index of a
column means the index of head.

In Figure 3, there are three plans {L1, L2, L3} for
two placement points P = {p1, p2}. The difference be-
tween plan L1 = {l1} and L 2 = {l2, l3} is that L1 places P
with one cycle {l1} while L2 does with two cycles {l2,
l3}. Generally, L1 is more efficient than L2. L3 = {l4, l5, l6}
is infeasible plan because of its second row l2 has no
placement point.

Figure 3. Placement point assignment problem example.

p4 fd1 p1 fd2 p2 fd4 - - p3 fd2 p5 fd2

1 4 2 2 5 3 3 1 4 5

Figure 4. Extended row with feeder selection, pick-up
sequence and place sequence.

The feeder selection problem selects a feeder for

each placement point in the matrix. If a feeder base has
only one feeder for one component, then this problem is
trivial. But in reality, there might be several feeders for
a component type, and in those cases, it is important to
decide which feeder should be selected. The feeders in
the upper right corner of the cells show the selected
feeders in Figure 4.

The pick-up sequencing problem decides the pick-
up order of components from the selected feeders, and
the placement sequencing problem decides the order of
components placing onto the placement points. Both
problems can be viewed as a travelling salesman prob-
lem with at most six stops, and the problems could be
solved easily since they are small size problems. Note
that our target SMD machine automatically decides both
sequences. The numbers in the bottom left and bottom
right corners of the cells in Figure 4 show the pick-up
sequence and the placement sequence within a cycle,
respectively.

4. PROPOSED ALGORITHM

This paper aims to propose a feeder re-assignment
algorithm. The feeder re-assignment algorithm of Grunow
et al. (2004) tries to swap two feeders, and if the swap
brings lower SMT plan time, it is accepted. They reported
significant time reduction in SMT plan time by their
simple 2-opt based improving algorithm. However, their
approach has some limitations to be applied for our pro-
blem as explained below, so we propose a new feeder
re-assignment algorithm.

• Gang pick: Our target SMD machine can pick com-
ponents simultaneously from a set of feeders while
this is not allowed in Grunow et al. (2004). Sun et
al. (2005) stated that the gang pick is critical in
minimizing pick-up time. The gang pick requires
specific condition to happen. Feeders need to be re-
assigned in proper distance in order to increase the
number of gang picks.

• Duplicate feeder: In the initial assignment proce-
dure, only one feeder for one component is allowed
to be assigned to feeder base as in Grunow et al.
(2004). However, in our case, more than one feeder
can be assigned if the additional feeders can reduce
the pick-up time. Assigning duplicate feeders may
decrease the gantry’s moving distance on the feeder
base and increase the possibility of gang pick.

A feeder assignment can be denoted by (s, F),

where s is feeder start index or the lowest index of the

Feeder Re-assign Problem in a Surface Mount Device with a Piano-Type Multi-Headed Gantry
Vol 12, No 4, December 2013, pp.330-335, © 2013 KIIE 333

feeder slot which has a feeder and F is a feeder ar-
rangement. Feeder assignment in Figure 5 would be
described as (25, {fd1, fd2, fd0, fd3, fd4, fd2, fd0, fd3}),
where fdk means a feeder of component k or ck (k > 0)
and fd0 means an empty feeder. A SMT plan L = {l1,
l2, … , lm} is a series of cycles, where li means i-th cycle
of plan L. Each cycle li = (li1, li2, li3, li4, li5, li6) is a set of
head operations, where lij denotes an operation of j-th
head in cycle li. Each head operation lij constitutes with
four parts, such as chosen placement, chosen feeder,
determined placement sequence, and pick-up sequence
as shown in Figure 4. Our proposed algorithm is an im-
proving algorithm so that an initial solution x0 = (s0, F0,
L0) is assumed to be given where (s0, F0) is the initial
feeder assignment and L0 is the initial SMD plan.

The initial SMD plan L0 is the best plan under the
feeder assignment (s0, F0). If we change feeder assign-
ment from (s0, F0) to (s’, F’), then we need to change the
initial plan L0 to L’, as fitted to (s’, F’). Procedure feed-
erSelectOpt does this job, it changes a plan L to be fitted
to a feeder assignment (s, F) considering feeder selec-
tion, pick-up and placement sequencing. Note that pla-
cement points are not re-assigned here even though it
promises better result because solving placement point
assignment problem requires expensive computational
cost. Function feeders(lij) returns a set of feeder slot
indices I = {3, 6, …} which have feeders with the same
component type with a placement in lij. If lij has no
placement then it returns {Ø}. Function setPick&Place
Seq(li, s, F) optimally sets pick and placement sequence
of head operations in cycle li based on the feeder ar-
rangement (s, F). Function T(li, s, F) returns the time of
cycle li based on (s, F) and T(L, s, F) returns the L’s
SMD plan time based on (s, F).

procedure feederSelectOpt(L, s, F)

for i = 1 to C // C is the number of cycles in C
for j = 1 to 6

I = feeders(lij)
for k = 1 to I

li’ = li;
let lij’ use feeder in feeder slot Ik;
setPick&PlaceSeq (li’, s, F);
if (T (li’, s, F) < T (li, s, F))

li = li’;

Our proposed algorithm feederReAssignemntAlgo-

rithm receives an initial solution (L0, s0, F0) and returns
improved solution (L, s, F) with decreased SMT plan
time. The proposed algorithm uses four sub-algorithms:
feeder2Opt, emptyFeederInsertion, moveFeeders, feed-
erAddition.

Figure 5. Feeder assignment example.

procedure feederReAssignmentAlgorithm (L0, s0, F0)
(L, S, F) = feederAddition (L0, s0, F0);

 //duplicate feeder addition
(C, s, F) = feeder2Opt (C0, s0, F0);
Repeat // Empty Feeder Insertion

(C’, s’, F’) = (C, s, F);
(C’, s’, F’) = emptyFeederInsertion (C’, s, F’);
(C’, s’, F’) = moveFeeders (C’, s, F’);
(C’, s’, F’) = feeder2Opt (C’, s, F’);
if T(C, s, F) < T (C’, s’, F’)

(C, s, F) = (C’, s’, F’);
until T(C, s, F) == T (C’, s’, F’)

return (L, S, F);

Procedure feeder2Opt is a simple 2-opt based algo-

rithm which tries to change two different feeders, and if
the change results in a lower plan time, it accepts the
change. Note that changing empty feeder with non-empty
feeder is possible. N2 (F) denotes a set of feeder ar-
rangement candidates by swapping two different feeders
of F. The function feasiFd (s, F) return true if feeder
assignment (s, F) is possible or false otherwise.

procedure feeder2Opt (L, s, F)

for each F’∈N2 (F)
if feasiFd (s, F’) is true

L’= L;
feederSelectOpt (L’, s, F’);
if T(L’, s, F’) < T (L, s, F)

F = F’; L = L’;
Restart for each loop;

return (L, s, F);

Procedure emptyFeederIinsertion tries to insert an

empty feeder into the feeder arrangement to increase the
possibility of gang picks. For example, if two 8-mm
feeders are arranged right next to each other, then two
feeders cannot be picked simultaneously because the
feeders’ distance between pick-up points (8 mm) is
smaller than the distance between heads (16 mm). How-
ever, by inserting an empty feeder between the feeders,
the feeders can be picked simultaneously. Function in-
sertFd(fd, F, i) inserts the feeder fd into i-th position of
F and returns the inserted feeder arrangement.

procedure emptyFeederInsertion (L, s, F)

L* = L; F* = F;
for i = 1 to F // F is the number of feeders in F

F’= insertFd (fd0, F, i)
if feasiFd (s, F’) is true

L’= L;
feederSelectOpt (L’, s, F’);
if T(L*, s, F*) > T(L’, s, F’)

L* = L’; F* = F’;
return (L*, s, F*);

Procedure moveFeeders attempts to find the best

start point of the first feeder of the feeder arrangement

Tae and Kim: Industrial Engineering & Management Systems
Vol 12, No 4, December 2013, pp.330-335, © 2013 KIIE 334

F’ by moving feeders. Pseudo-codes of the proposed
procedures are as follows.

procedure moveFeeders (L, s, F)

L* = L; s* = s;
for s’ = 0 to 60

if feasiFd (s’, F) is true
L’= L;

feederSelectOpt (L’, s’, F);
if T (L*, s*, F) > T (L, s’, F)

L* = L’; s* = s’;
return (L*, s*, F);

Procedure feederAddition tries to assign duplicate

feeders into the feeder base. Assigning a duplicate fee-
der into the feeder base always promises less pick-up
time. However, due to the limited number of feeder slots,
not all feeders can be assigned. It is important to decide
what kind of feeder to be added and where it is added.
Let Csort be a sorted component types by the number of
placements in descending order and Csort,i be a compo-
nent which has i-th number of placements. Let x-ave-
cord (c1) be a function which returns the average x-
coordinate of placements with component type c1. Func-
tion idealIdx (x, fd) returns a feeder slot index to which
feeder fd can be assigned and which is the closest to the
coordinate of x. If there is no feeder slot to which the
feeder can be assigned then it returns -1 as a sign of
infeasibility.

procedure feederAddition(L, s, F)

Csort = a sorted C with the placement number
Repeat

for i = 0 to sortC
if there remains feeder of Csort, i

x-cord = x-avecord (ci);
idx = idealIdx (x-cord, fdi);
if idx is not -1

F’= insertFd (fd0, L,)
if feasiFd (s, F’) is true

L’= L;

feederSelectOpt(L’, s, F’);
L = L’; F = F’;

until impossible to add a feeder
return (L, s, F);

5. COMPUTATIONAL RESULTS AND
CONCLUSION

Table 1 shows computational results of the pro-
posed feeder re-assignment algorithm. The proposed
algorithm was programmed in C++ language, and the
computational test was performed on an Intel Dual Core
E7300 2.66 GHZ 2.67 GHZ/4 GB RAM PC. Initial
SMD plan (C0, s0, F0) is provided by the given construc-
tion algorithm of Tae and Kim (2013). The benchmark
data were obtained from an anonymous SMD company
in Korea. The computational results show that our pro-
posed algorithm could improve the initial SMT plan by
1.68% on average.

In this paper, we described an SMD optimization
problem for a piano-type multi-head SMD machine. We
briefly introduced its specific characteristics of the SMD,
such as gang-pick. We proposed a feeder re-assign im-
provement algorithm based on feeder-move and feeder-
change. Our Computational results show the effective-
ness of our proposed algorithm on some real-world ben-
chmark data set.

REFERENCES

Ayob, M. and Kendall, G. (2004), A nozzle selection
heuristic to optimise the hybrid pick and place ma-
chine, Proceedings of IEEE Conference on Cyber-
netics and Intelligent Systems, Singapore, 1260-1265.

Ayob, M. and Kendall, G. (2005), An on-line construc-
tive heuristic to optimise the hybrid pick and place
machine, School of CSIT, The University Of Not-
tingham, Nottingham, UK.

Table 1. Computational result of proposed algorithm

Benchmark
data

No. of
components

No. of
placements

No. of
tape

feeders

No. of
tray

feeders

No. of
cycles

SMT plan
time before

(sec)

SMT plan
time after

(sec)

Reduced
time
(sec)

Reduced
(%)

Computation
time
(sec)

3_01 7 14 4 1 8 20.34 20.04 0.29 1.4 0.02
3_02 11 22 8 1 12 28.66 28.37 0.28 1.0 0.09
3_03 11 47 16 1 21 57.57 56.67 1.73 1.5 0.95
3_04 11 47 8 1 26 59.30 58.30 0.99 1.7 0.28
3_05 11 47 16 1 26 58.92 57.55 1.34 2.3 2.14
3_06 11 47 11 1 21 56.65 55.76 0.89 1.6 0.66
3_07 12 50 11 1 23 62.64 61.47 1.19 1.9 0.67
3_08 13 52 11 1 27 68.06 67.69 0.38 0.5 0.53

Average - - - - - - - 0.89 1.5 -

Feeder Re-assign Problem in a Surface Mount Device with a Piano-Type Multi-Headed Gantry
Vol 12, No 4, December 2013, pp.330-335, © 2013 KIIE 335

Ayob, M. and Kendall, G. (2008), A survey of surface
mount device placement machine optimisation: ma-
chine classification, European Journal of Opera-
tional Research, 186(3), 893-914.

Duman, E. and Or, I. (2004), Precedence constrained
TSP arising in printed circuit board assembly, In-
ternational Journal of Production Research, 42(1),
67-78.

Grunow, M., Gunther, H. O., Schleusener, M., and Yil-
maz, I. O. (2004), Operations planning for collect-
and-place machines in PCB assembly, Computers
& Industrial Engineering, 47(4), 409-429.

Lee, S. H., Lee, B. H., and Park, T. H. (2000), A hierar-
chical method to improve the productivity of multi-
head surface mounting machines, Intelligent Auto-
mation and Soft Computing, 6(4), 291-301.

Leipala, T. and Nevalainen, O. (1989), Optimization of
the movements of a component placement machine,
European Journal of Operational Research, 38(2),
167-177.

Sun, D. S., Lee, T. E., and Kim, K. H. (2005), Compo-
nent allocation and feeder arrangement for a dual-
gantry multi-head surface mounting placement tool,
International Journal of Production Economics,
95(2), 245-264.

Tirpak, T. M. (1993), Simulation software for surface
mount assembly, Proceedings of the 25th Confer-
ence on Winter Simulation, Los Angeles, CA, 796-
803.

Van Laarhoven, P. J. and Zijm, W. H. M. (1993), Pro-
duction preparation and numerical control in PCB
assembly, International Journal of Flexible Manu-
facturing Systems, 5(3), 187-207.

Wilhelm, W. E. and Tarmy, P. K. (2003), Circuit card as-
sembly on tandem turret-type placement machines,
IIE Transactions, 35(7), 627-645.

Wilhelm, W. E., Arambula, I., and Choudhry, N. N. D.
(2006), Optimizing picking operations on dual-head
placement machines, IEEE Transactions on Auto-
mation Science and Engineering, 3(1), 1-15.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

