DOI QR코드

DOI QR Code

수반모형을 이용한 한반도 남동지역의 오존 전구물질의 오존 생성 민감도에 관한 수치연구

Numerical Study on the Ozone Formation Sensitivity of Precursors Using Adjoint Model around the South-eastern Area of the Korean Peninsula

  • 박순영 (부산대학교 지구환경시스템학부) ;
  • 이순환 (부산대학교 지구과학교육과) ;
  • 이화운 (부산대학교 지구환경시스템학부) ;
  • 김동혁 (부산대학교 지구환경시스템학부)
  • Park, Soon-Young (Division of Earth Environment System, Pusan National University) ;
  • Lee, Soon-Hwan (Department of Earth Science Education, Pusan National University) ;
  • Lee, Hwa Woon (Division of Earth Environment System, Pusan National University) ;
  • Kim, Dong-Hyeok (Division of Earth Environment System, Pusan National University)
  • 투고 : 2013.10.25
  • 심사 : 2013.11.25
  • 발행 : 2013.12.31

초록

한반도 동남 지역에서 고농도 오존이 발생한 사례에 대해 $NO_x$에 대한 오존의 수반민감도를 살펴보았다. 사례일에 지배적이었던 국지 순환과 고농도 오존을 모의하기 위해 WRF-CMAQ 모델을 사용하였다. 수반민감도 분석을 위해 CMAQ의 수반 모델을 적용하였다. 본 연구의 목적은 고농도 오존에 주변지역이 미친 영향을 살펴본 수용지 중심의 민감도 분석이다. 또한, 행정 구역별 기여도를 정량적으로 산정하였는데, 대구를 수용지로 하는 민감도 분석 결과 영향지역은 대구에 인접하여 포항으로 이어지는 영역과 남동쪽으로 떨어진 넓은 지역으로 나타났다. 첫 번째 영역은 고농도 사례일 당일에 배출된 $NO_x$의 민감도가 주로 나타났고 두 번째 영역은 전 날 배출에 의한 영향이었다. 반면, 부산을 수용지로 한 경우 사례일 당일 주간의 해풍의 영향으로 같은 날의 $NO_x$ 배출 효과 보다는 전 날 배출되었던 농도에 대한 민감도가 더 중요하였다. 민감도 영향지역에 대한 단면도 분석 결과 지표부근의 $NO_x$ 수송과 함께 상층에서 이류되는 영향도 중요하였다.

Ozone sensitivity analysis with respect to $NO_x$ is conducted around the south-eastern area of the Korean Peninsula. WRF-CMAQ modeling system is used to simulate a local circulation and high ozone episode day. To analyze the sensitivity, the adjoint model for CMAQ is adopted in this study. The purpose of current study is to investigate the location that affects a day time ozone concentration of these receptors on the high ozone episode day. Adjoint sensitivity analysis for Daegu shows two areas of influence. One is the range from the neighboring location to Pohang and it affects mainly on the same day as receptor time. The other is the remote south-eastern area from Daegu. This remote influence area suggests that $NO_x$ emitted on the previous day can change the ozone concentration at receptor time. The influence area for Busan, on the other hand, is originated only from the emission on the previous day because the sea-breeze occurred on the episode day makes low influence of surrounding emission. The cross sectional analysis reveals that $NO_x$ advection is important not only near the surface of land but also around the height of boundary layer.

키워드

참고문헌

  1. Byun, D.W. and Ching, J.K.S., 1999, Science algorithms of the EPA models-3 Community Multi-scale Air Quality (CMAQ) modeling system. EPA report, EPA/ 600/R-99/ 030, NERL, Research Triangle Park, NC.
  2. Cohan, D.S., Hamami, A., Hu, Y., and Russell, A.G., 2005, Nonlinear response of ozone to emissions: source apportionment and sensitivity analysis. Environmental Science & Technology, 39, 6739-6748. https://doi.org/10.1021/es048664m
  3. Dunker, A.M., 1984, The decoupled direct method for calculating sensitivity coefficients in chemical kinetics. Journal of Chemical Physics, 81, 2385-2393. https://doi.org/10.1063/1.447938
  4. Dunker, A.M., Yarwood, G., Ortmann, J.P., and Wilson, G.M., 2002, Comparison of source apportion and source sensitivity of ozone in a three-dimensional air quality model. Environmental Science & Technology, 36, 2953-2964. https://doi.org/10.1021/es011418f
  5. Errico, R.M., 1997, What is an adjoint model? Bulletin of the American Meteorological Society, 78, 2577-2591. https://doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
  6. Hakami, A., Odman, M.T., and Russell, A.G., 2003, Highorder, direct sensitivity analysis of multidimensional air quality models. Environmental Science & Technology, 36, 2442-2452.
  7. Hakami, A., Seinfeld, J.H., Chai, T., Tang, Y., Carmichael, G.R., and Sandu, A., 2006, Adjoint sensitivity analysis of ozone nonattainment over the continental United States. Environmental Science & Technology, 40, 3855-3864. https://doi.org/10.1021/es052135g
  8. Hakami, A., Henze, D.K., Seinfeld, J.H., Singh, K., Sandu, A., Kim, S., Byun, D., and Li, Q., 2007, The adjoint of CMAQ. Environmental Science & Technology, 41, 7807-7817. https://doi.org/10.1021/es070944p
  9. Kim, S. and Lee C.-B., 2011, Estimating influence of local and neighborhood emissions on ozone concentrations over the Kwang-Yang bay based on air quality simulations for a 2010 June episode. Journal of Korean Society for Atmospheric Environment, 25, 504-522. (in Korean) https://doi.org/10.5572/KOSAE.2011.27.5.504
  10. Lee, S.-H., 2012, Analysis of the Impact of QuikSCAT and ASCAT Sea Wind Data Assimilation on the Prediction of Regional Wind Field near Coastal Area. Journal of Korean Earth Science Society, 33, 309-319. (in Korean) https://doi.org/10.5467/JKESS.2012.33.4.309
  11. Lee, S.-H., Lee, H.-W., Kim, Y.-K., Jeon, W.-B., Choi, H.- J., and Kim, D.-H., 2011, Impact of continuously varied SST on land-sea breezes and ozone concentration over south-western coast of Korea. Atmospheric Environment, 45, 6439-6450. https://doi.org/10.1016/j.atmosenv.2011.07.059
  12. Lee, S.-H., Sung, K.-H., and Lee, H.W., 2008, Impact of regional trans-boundary ozone associated with complex terrain on urban air quality. Atmospheric Environment, 42, 7384-7396. https://doi.org/10.1016/j.atmosenv.2008.06.027
  13. Lee, S.-H., and Yun, S.-H., 2011, Impact of Meteorological Wind Fields Average on Predicting Volcanic Tephra Dispersion of Mt. Baekdu. Journal of Korean Earth Science Society, 32, 360-372. (in Korean) https://doi.org/10.5467/JKESS.2011.32.4.360
  14. Moon, Y.-S., Lim, Y.-K., Hong, S.-W., and Chang, E.-M., 2013, Verification and Estimation of the Contributed Concentration of CH4 Emissions Using the WRFCMAQ Model in Korea, 34, 209-223. (in Korean)
  15. National Institute of Environmental Research, 2011, Annual report of air quality in Korea 2010. Ministry of Environment, 33 p. (in Korean)
  16. Park, S.-Y., Lee, H.W., Lee, S.-H., Lee, K.O., and Ji H., 2011, Impact of the variation of sea breeze penetration due to terrain complexity on PBL development. Journal of the Environmental Sciences, 20, 275-289. (in Korean) https://doi.org/10.5322/JES.2011.20.2.275
  17. Pinder, R. and Hakami, A., 2011, Development and applications of CMAQ adjoint. 10th Annual CMAS Workshop, 25 Oct.
  18. Sandu, A., Daescu, D.N., and Carmichael, G.R., 2005, Adjoint sensitivity analysis of regional air quality models. Journal of Computational Physics, 204, 222-252. https://doi.org/10.1016/j.jcp.2004.10.011
  19. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W., and Powers, J.G., 2008, A description of the advanced research WRF version 3, NCAR Technical Note, NCAR/TN-475+STR.
  20. University of Houston, 2009, Air quality modeling of TexAQS-II episodes with data assimilation, TERC Project H98.