DOI QR코드

DOI QR Code

Reliability Analysis of Dual-Channel CAN bus for Submarine Combat System

잠수함 전투체계를 위한 이중채널 CAN 버스의 신뢰도 분석

  • 송무근 (경북대학교 IT대학 전자공학부) ;
  • 김은로 (국방과학연구소 함정전투체계개발단) ;
  • 이동익 (경북대학교 IT대학 전자공학부)
  • Received : 2013.08.27
  • Accepted : 2013.12.06
  • Published : 2013.12.31

Abstract

Thanks to various benefits, low-cost real-time communication networks so called fieldbus have been widely used in many industrial applications including military systems, such as aircrafts, submarines, and robots. This paper presents a reliability analysis of dual-channel CAN(Controller Area Network) fieldbus which is used for controlling various equipment of submarine combat system. A submarine combat system playing a critical role to the success of missions and survivability consists of various devices including sensors/actuators and computers. Since a communication network for submarine combat system must satisfy an extremely high level of reliability, a dual channel technique is commonly adopted. In this paper, a Petri Net based reliability model for dual-channel CAN is discussed. A reliability model called generalized stochastic Petri Nets (GSPN) is built by utilizing the information on physical faults with CAN. The effectiveness of the proposed model is analyzed in terms of unreliability with respect to failure rate and repair rate.

최근 항공기, 잠수함, 로봇 등 고도의 신뢰성이 요구되는 군사무기체계 분야에 상용 필드버스의 적용이 활발히 이루어지고 있다. 잠수함 전투체계 역시 대표적인 군사용 전자 장비로서 다양한 컴퓨터와 센서 및 액추에이터들이 실시간 네트워크로 연결되어 있다. 잠수함의 작전수행능력 및 생존성과 직결되는 전투체계용 네트워크는 매우 높은 수준의 신뢰성을 만족해야 된다. 그 결과 잠수함 전투체계의 구성장비들을 제어하기 위한 필드버스로써 표준 CAN(Controller Area Network)을 기반으로 채널과 제어기를 이중화한 이중채널 CAN 버스가 주로 이용되고 있다. 본 논문에서는 Petri Net을 이용하여 이중채널 CAN 버스의 신뢰도 분석 모델을 제시한다. 기존연구에서는 네트워크를 통한 정보전송 성능 분석에 주안점이 주어졌으나, 본 논문에서는 CAN의 다양한 물리적 고장 유형을 반영하여 GSPN(Generalized Stochastic Petri Nets) 모델을 제안한다. 제안된 모델을 기반으로 고장율과 고장복구율을 변경하면서 각 고장 유형이 이중채널 CAN 버스의 신뢰도에 미치는 영향을 분석한다.

Keywords

References

  1. H. T. Dorissen and K. Durkopp, "Mechatronics and drive-by-wire systems: advanced non-contacting position sensors," Control Engineering Practice, vol.11, no.2, pp.191-197, Feb. 2003. https://doi.org/10.1016/S0967-0661(02)00146-6
  2. S. M. Kim, P. H. Anh, J. M. Lee, "Fault Tolerant Ethernet Techniques of High-tech Weapon Systems," Information and Communications Magezine, vol. 26, no. 3, pp. 69-75, Feb. 2009.
  3. T. Hiaroka, S. Eto, O. Nishihara, H. Kumamoto, "Fault tolerant design for x-by-wire vehicle," SICE 2004 Annual Conference, pp.1940-1945, Aug. 2004.
  4. H. S. Kim, "Study on the reliability analysis for fault-tolerant dual ethernet," Journal of the KIMST, vol.10, no.2, pp.107-114, Jun. 2007.
  5. ISO 11898, Road vehicles-interchange of digital information-Controller Area Network(CAN) for high-speed communication, International Standards Organisation(ISO), Nov, 1993.
  6. J. Rufino, Technical Report CSTC Technical Report RT-98-02, Instituto Superior Tecnico NavIST Group, 1998.
  7. Sheldon B. Akers, "Binary decision diagram," IEEE Trans. Computers, vol.100, no.6, pp.509-516, Jun. 1978.
  8. S. Rai, K. K. Aggarwal, "An efficient methods for reliability evaluation of a general networks," IEEE Trans. Reliability, vol.27, no.3, pp.206-211, Aug. 1978.
  9. J. A. Abraham, "An improved algorithm for network reliability," IEEE Trans. Reliability, vol.28, no.1, pp58-61, Apr. 1979.
  10. S. Hariri, C. S. Raghavendra, "SYREL : A symbolic reliability algorithm based on path and cutset methods," IEEE Trans. Reliability, vol.35, no.10, pp.1224-1232, Oct. 1987.
  11. Malhotra, M. and Ciardo, G. and Trivedi, K. S., "Dependability modeling using Petri-nets," IEEE Trans. Reliability, vol.44, no.3, pp.428-440, Sep. 1995. https://doi.org/10.1109/24.406578
  12. A. Ajmone-Marsan, G. Balbo, "A class of generalized stochastic Petri nets for the performance evaluation multiprocessor systems," ACM Trans. Comp. Systems, vol.2, no.2, pp.93-122, May. 1984. https://doi.org/10.1145/190.191
  13. H.A.Thompson, et al., "A CAN based safety critical distributed aeroengine control systems architecture demonstrator," Microprocessors and Microsystems, vol.23, pp.345-355, Nov. 1999. https://doi.org/10.1016/S0141-9331(99)00042-3
  14. M.A.Parker, Li Ran, S.J.Finney, "Distributed Control of a Fault-Tolerant Modular Multilevel Inverter for Direct-Drive Wind Turbine Grid Interfacing," IEEE Trans. Industrial Electronics, vol.60, no.2, pp.509-522, Feb. 2013. https://doi.org/10.1109/TIE.2012.2186774
  15. J. Blandin, P.Leon "Network architectures for underwater systems: two applications of the CAN bus," Proc. OCEANS'98, pp.503-507, Oct. 1998.
  16. G. Ciardo, Analysis of large stochastic Petri net models, PhD thesis, Duke University, 1989.
  17. G. Chiola, GreatSPN users' manual technical report, Dipartimento di Informatica, Universita degli studi di torino, 1987.
  18. M. A. Marsan, G. Balbo, G. Ciardo, and G. Conte, Modelling techniques and tools for performance analysis, Elsevier Science Publishers, pp.155-170, 1985.
  19. I.Koren, C.M.Krishna, Fault-Tolerant Systems, Elsevier Science Publishers, 2007.