DOI QR코드

DOI QR Code

집성재 라미나용 낙엽송 재내 잔류 건조응력 변화 분석

Analysis of residual drying stress in Larix Kaempferi wood used as glulam laminar

  • 한연중 (서울대학교 농업생명과학대학 산림과학부) ;
  • 장윤성 (서울대학교 농업생명과학대학 산림과학부) ;
  • 박용건 (서울대학교 농업생명과학대학 산림과학부) ;
  • 정기영 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 홍정표 (SK임업) ;
  • 이전제 (서울대학교 농업생명과학대학 산림과학부) ;
  • 여환명 (서울대학교 농업생명과학대학 산림과학부)
  • Han, Yeonjung (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Chang, Yoon-Seong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Park, Yonggun (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Jeong, Gi-Young (Division of Forest Resources, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Hong, Jung-Pyo (SK Forest) ;
  • Lee, Jun-Jae (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Yeo, Hwanmyeong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2013.07.03
  • 심사 : 2013.10.15
  • 발행 : 2013.11.25

초록

본 연구에서 국산 낙엽송재의 공학목재로의 이용가능성, 특히 교호집성재 라미나로서의 이용가능성을 확인하기 위하여 열기건조 중과 건조 후 판재 내 잔류응력을 분석하였다. 연구결과를 통해 이쿼라이징 처리에 의한 함수율 동일화 효과가 증명되었고, 컨디셔닝 처리에 의한 잔류응력의 감소효과가 정량화되었다. 건조 중 목재 내 잔류응력 분석을 위하여 프롱법과 슬라이스법을 실시하였다. 프롱 제작 후 표면경화율을 측정하였고, 슬라이스의 절단 후 탄성변형량을 기준으로 표면으로부터 약 10 mm 깊이까지의 건조응력을 정량적으로 분석하였다. T10-C4와 T12-D5 열기건조 스케줄 적용 시 열기건조 중 판재 표면의 인장응력과 압축응력은 모두 2.2 MPa을 넘지 않음을 확인하였다. 낙엽송의 횡단방향 인장강도와 압축강도가 평균 2.65 MPa, 4.60 MPa인 점을 고려하면, 더욱 강한 건조스케줄 적용이 추천된다. 건조 후처리에 의해 폭굽음과 비틀림을 약 40% 줄일 수 있었다.

The objective of this study was to analyse the residual stress in Larix kaempferi board during and after kiln-drying. The boards were primarily intended for using as laminar of cross laminated timber (CLT). In this study, the equivalence of moisture content by equalizing treatment was proved and reduction of residual stress by conditioning treatment was quantified. Prong test and slice test were carried out to analyse the residual stress in wood during drying. Transverse casehardening was measured immediately after making prong sample. Residual stress of four parts in wood from surface to center was analyzed quantitatively based on elastic deformation after just cutting slices from board. Tensile stress and compressive stress on the surface of board during drying did not exceed 2.2 MPa when boards were dried by kiln-drying schedule of T10-C4 and T12-D5. Because the tensile strength and compressive strength of transverse direction of Larix kaempferi lumber are 2.65 MPa and 4.60 MPa, application of more severe drying schedule can be recommended. Cup and twist were reduced by about 40% by equalizing and conditioning treatments after drying.

키워드

참고문헌

  1. 심상로, 여환명, 심국보. 2005. 이수종 구조용집성재의 전단접착력 및 접착내구성 평가. 목재공학 33(1): 87-96.
  2. 정희석, 강호양, 박정환, 이남호, 이형우, 강춘원, 여환명. 2008. 새로 쓴 목재건조학. 서울대학교출판부. 서울. p. 511.
  3. Bodig, J. and B. A. Jayne. 1982. Mechanics of Wood and Wood Composites. Van Norstand Reinhod Company. New York. NY. USA. p. 714.
  4. Boone, R. S., C. J. Kozlik, P. J. Bois, and E. M Wengert. 1988. Dry Kiln Schedules for Commercial Woods-Temperate and Tropical. Gen. Tech. Rep. FPL- GTR-57. Madison. WI. USA. p. 158.
  5. Dahiblom, O., S. Ormarsson, and H. Petersson. 1996. Prediction of deformation in wood during by an extended two-dimensional formulation. Paper presented at the 5th IUFRO Internation Wood Drying Conference. Quebec City. Canada. 67-76.
  6. Kretschmann, D. E. 2010. Mechanical Properties of wood. In : Chapter 5. Wood Handbook: Wood as an Engineering material. Gen. Tech. Rep. FPL-GTR-190. Madison. WI. USA. p. 508.
  7. Li, D. G. and L. B. Gu. 1999. The mechano-sorptive behavior of poplar during high temperature drying. Drying Technol. 17(9): 1947-1958.
  8. Pang, S. 2000. Modeling of stress development during drying and relief during streaming in Pinus radiata lumber. Drying Technol. 18(8): 1677-1696. https://doi.org/10.1080/07373930008917806
  9. Perre, P. 1996. The numerical modelling of physical and mechanical phenomena involved in wood drying. Paper presented at the 5th IUFRO Internation Wood Drying Conference. Quebec City. Canada. 11-38.
  10. Rice, R. W. and R. L. Youngs. 1990. The mechanism and development of creep during drying of red oak. Holz Roh-Werkst 48(1): 73-79. https://doi.org/10.1007/BF02610711
  11. Simpson, W. T. 1991. Dry Kiln Operator's Manual. Agriculture Handbook No. 188. Madison. WI. USA. p. 274.
  12. Yeh, B., D. Kretschmann, and B. Wang. 2011. Manufacturing Cross-laminated timber manufacturing. In: Chapter 2. CLT Handbook. FPInnovations. Quebec. Quebec. Canada.
  13. Zhan, J. F., J. Y. Gu, and S. Q. Shi. 2009. Rheological behavior of Larch timber during conventional drying. Drying Technol. 27(10): 1041-1050. https://doi.org/10.1080/07373930903218412

피인용 문헌

  1. The effect of controlling the drying distortion of laminas on the production yield of cross-laminated timber (CLT) using Larix kaempferi wood vol.74, pp.4, 2016, https://doi.org/10.1007/s00107-016-1008-3
  2. Separation of drying strains and the calculation of drying stresses considering the viscoelasticity of red pine wood during drying vol.35, pp.15, 2017, https://doi.org/10.1080/07373937.2017.1283323