DOI QR코드

DOI QR Code

Studies on Slip and Mechanical Properties of Thermoplastic Polyurethane Elastomer Containing Sulfuric Acid

Sulfuric acid를 도입한 열가소성 폴리우레탄 탄성체의 슬립특성 및 기계적 물성에 관한 연구

  • Received : 2013.08.19
  • Accepted : 2013.10.18
  • Published : 2013.12.31

Abstract

We synthesized thermoplastic polyurethane elastomer (TPU) with different contents of sulfuric acid group, and characterized their physical properties such as mechanical, thermal and grip properties. And the results were compared with carboxylic acid-introduced TPU. Wet slip, tensile strength and abrasion properties were increased by the introduction of acid group. Mechanical properties increased with increasing the acid content up to 0.3 wt%. However, wet slip was continually increased as the acid content increased due to increase of hydrophilicity of TPU.

Sulfuric acid group을 도입하여 열가소성 폴리우레탄을 제조하였으며, sulfuric acid의 함량을 변경하여 acid 함량에 따른 특성 변화를 연구하였다. 그리고 carboxylic acid를 도입한 폴리우레탄을 제조하여 비교 분석했다. 연구 결과 acid group을 도입함으로써 인장강도, 마모 등 기계적 물성 및 그립 특성이 증가하는 것을 확인할 수 있었으며, Acid 함량별로 물성을 측정한 결과, 일정한 함량까지 기계적 물성은 증가하며 일정 함량 이상에서는 기계적 물성이 감소하는 것을 확인할 수 있었다. Wet slip의 경우 또한 acid group 도입에 의해 친수성이 증가함으로 acid 함량이 증가할수록 wet slip은 증가 하는 것을 확인할 수 있었다. Carboxylic acid를 도입한 폴리우레탄과 비교 결과, 수소결합력이 약해 기계적 물성은 낮게 나타났으나 rebounding 특성은 더 높게 나타나는 것을 확인할 수 있었다.

Keywords

References

  1. C. Hepburn, "Polyurethane Elastomer", Elsevier, New York, 1991.
  2. C. Prisacariu, "Polyurethane Elastomers : from morphology to mechanical aspects", Springer, 2011.
  3. K. C. Frrish and S. L. Reegen, "Advances in Urethane Science and Technology", vol. 1-8, Technomic USA, 1978.
  4. R. Bonart, "Thermoplastic elastomers", Polymer, 20, 1389, (1979). https://doi.org/10.1016/0032-3861(79)90280-5
  5. M. J. Han, K. B. Choi, S. H. Kim, and S. H Lee, "폴리우레탄 탄성체의 분자구조와 물리적 성질과의 관계", Polymer (Korea), 7, 6 (1983).
  6. G. Woods, "The ICI Polyurethane Book", ICI Polyurethanes, 1987.
  7. G. Oertel, "Polyurethane Handbook", Carl Hanser Verlag, Munich, 1985.
  8. Koichi ayama and Kumamoto, U.S. patent 5952444 (1999)
  9. R. P. Sijbesma, E. W. Meiger, "Quadruple hydrogen bonded systems", Chem. Commun., 5 (2003).
  10. M. Muller, R. Stadler, F. Kremer, G. Williams, "On the Motional Coupling between Chain and Junction Dynamics in Thermoreversible Networks", Macromolecules, 28, 6942 (1995). https://doi.org/10.1021/ma00124a034
  11. T. Loontjens, J. Put, B. Coussens, R. Lange, J. Palmen, T. Sleijen, B. Plum, "Novel Supramolecular Polymer Networks Based on Melamine and Imide containing Oligomers", Macromol. Symp., 174, 357 (2001). https://doi.org/10.1002/1521-3900(200109)174:1<357::AID-MASY357>3.0.CO;2-8
  12. C. C. Peng, V. Abetz, "A Simple path way toward Quantitative Modification of Polybutadiene: A New Approach to Thermoreversible Cross-Linking Rubber Comprising Supramolecular Hydrogen-Bonding Networks", Macromolecules, 38, 5575 (2005). https://doi.org/10.1021/ma050419f
  13. K. Chino, M. Ashiura, "Thermoreversible Crosslinking Rubber using Supramolecular Hydrogen Bonding Networks", J. Natori, Rubber Chem. Technol., 75, 713 (2002). https://doi.org/10.5254/1.3544997
  14. K. Chino, M. Ashiura, "Themoreversible Cross-Linking Rubber Using Supramolecular Hydrogen-Bonding Networks", Macromolecules, 34, 9201 (2001). https://doi.org/10.1021/ma011253v
  15. S. H. Son, I. H. Kim, H. J. Lee and J. H. Kim, "수분산성 폴리우레탄의 입자 크기 조절에 관한 연구 : Carboxyl group 과 Dielectric constant의 효과", Polymer(korea), 21, 375 (1997).
  16. D. G. Hundiwale, U. R. Kapadi and M. V. Pandya, "Effect of Macroglycol Structure and Its Molecular Weight on Physicomechanical Properties of Polyurethanes" J. Appl. Polym. Sci., 55, 1329 (1995). https://doi.org/10.1002/app.1995.070550906
  17. D. Y. Mok, H. D. Shin, D. H. Kim and G. N. Kim, "Acid Group 이 도입된 Casting 폴리우레탄 탄성체의 접착 및 기계적 물성에 관한 연구", J. Adhesion and Interface., 14, 68 (2013). https://doi.org/10.17702/jai.2013.14.2.068
  18. Powell PC, "Engineering with polymers", New York: Chapman & Hall 1983.
  19. Wang, T. L, Yang, C. H, Shieh, Y. T. Yeh, A. C, "Synthesis and properties of conducting organic/inorganic polyurethane hybrids", Eur. Polym. J., 45, 387 (2009). https://doi.org/10.1016/j.eurpolymj.2008.11.020
  20. K. Y. Chen, J. F. Kuo, C. Y. Chen, "Synthesis, characterization and platelet adhesion studies of novel ion-containing aliphatic polyurethanes", Biomaterials, 21, 161 (2000). https://doi.org/10.1016/S0142-9612(99)00144-1
  21. Okkema AZ, Visser SA, Cooper SL, "Physical and bloodcontacting properties of polyurethanes based on a sulfonic acid-containing diol chain extender", J. Biomed. Mater. Res., 25, 1371 (1991). https://doi.org/10.1002/jbm.820251106
  22. Fougnot C, Dupillier MP, Jozefowicz M, "Anticoagulant activity of amino acid modified polystyrene resins: influence of the carboxylic acid function", Biomaterials, 4, 101 (1983). https://doi.org/10.1016/0142-9612(83)90048-0
  23. Douzon C, Kanmangne FM, Serne H, Labarre D, Jozefowicz M, "Heparin-like activity of insoluble sulphonated polystyrene resins part III: Binding of dicarboxylic amino acids", Biomaterials, 8, 190 (1987). https://doi.org/10.1016/0142-9612(87)90062-7
  24. Ko TM, Lin JC, Cooper SL, "Surface Characterization and Platelet adhesion studies of Plasma-Carboxylated Polyethylene", J. Colloid. Interf. Sci., 156, 207 (1993). https://doi.org/10.1006/jcis.1993.1101
  25. Lee JH, Khang G, Lee JW, Lee HB, "Platelet adhesion onto chargeable functional group gradient surfaces", J. Biomed. Mater. Res., 40, 180 (1998). https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<180::AID-JBM2>3.0.CO;2-H