DOI QR코드

DOI QR Code

Population Genetic Variation of Ulmus davidiana var. japonica in South Korea Based on ISSR Markers

ISSR 표지자를 이용한 느릅나무 자연집단의 유전변이 분석

  • Ahn, Ji Young (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Hong, Kyung Nak (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Jei Wan (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Yang, Byung Hoon (Forest Environment Conservation Division, Korea Forest Service)
  • 안지영 (국립산림과학원 산림유전자원과) ;
  • 홍경낙 (국립산림과학원 산림유전자원과) ;
  • 이제완 (국립산림과학원 산림유전자원과) ;
  • 양병훈 (산림청 산림환경보호과)
  • Received : 2013.08.05
  • Accepted : 2013.09.26
  • Published : 2013.12.31

Abstract

Population genetic structure and diversity of Ulmus davidiana var. japonica in South Korea were studied using ISSR markers. A total of 45 polymorphic ISSR amplicons were cropped from 7 ISSR primers and 171 individuals of 7 populations. The average of effective alleles and the proportion of polymorphic loci were 1.5 and 89% respectively. The Shannon's diversity index (I) was 0.435 and the expected heterozygosity from the frequentist's method ($H_e$) and the Bayesian inference (hs) were 0.289 and 0.323 respectively. From AMOVA, 4.2% of total genetic variation in the elm populations was explained with the difference among populations (${\Phi}_{ST}=0.042$) and the other 95.8% was distributed within populations. The ${\theta}^{II}$ value by Bayesian method which was comparable to the FST was 0.043. So the level of genetic diversity in the elm populations was similar to that in Genus Ulmus and the level of genetic differentiation was lower than that of others. No population showed a significant difference in the population-specific fixation indices (average of $PS-F_{IS}=0.822$) or the population-specific genetic differentiations (average of $PS-F_{ST}=0.101$). Seven populations were allocated into 3 groups in the UPGMA and the PCA, but the grouping patterns were different. Also, we could not confirm any geographic trend from Bayesian clustering.

국내의 느릅나무(Ulmus davidiana var. japonica) 집단에 대한 유전구조와 유전다양성을 분석하였다. 느릅나무 7개 자연집단, 171개체에 대하여 7개 ISSR 표지자를 이용하여 총45개의 다형적 증폭산물을 확인하였다. 유효대립인자와 다형적 유전자좌 비율의 평균값은 1.5개와 89%이었다. Shannon의 다양성 지수(I)가 0.435, 빈도주의 방법에 의한 이형접합도 기대치($H_e$)는 0.289, 베이즈 추정에 의한 이형접합도 기대치(hs)가 0.323으로 나타났다. AMOVA 분석에서 느릅나무 집단의 유전변이 중 4.2%가 집단간 차이(${\Phi}_{ST}=0.042$)에 기인하였으며, 95.8%를 집단내 개체들이 보유하고 있었다. 베이즈 추정에 의한 집단간 유전분화율(${\theta}^{II}$)은 0.043으로 나타났다. 국내 느릅나무 집단의 유전다양성은 다른 느릅나무속 수종과 유사한 수준에 해당하였으나, 집단간 유전분화 정도는 매우 낮았다. 베이즈 근사추정에서 집단별 고정지수(평균 $PS-F_{IS}=0.822$)나 집단 특이적 유전분화율(평균 $PS-F_{ST}=0.101$)에서 유의할 만한 차이를 보이는 집단은 없었다. 군집분석과 주성분분석에서 7개의 집단들을 3개 군집으로 나눌 수 있었으나, 두 방법의 군집 양상은 일치하지 않았다. 또한 베이즈 군집분석에서 집단간 유연관계와 지리적 분포의 상관성을 확인할 수 없었다.

Keywords

References

  1. Ahn, J.J. and Park, J.H. 2010. Antioxidant activity and protective effect on DNA damage of extracts from Ulmus davidiana var japonica. The Journal of Applied Oriental Medicine 10(2): 9-16.
  2. Cho, K.J., Jung, J.M., Kim, W.W., Kim Y.M., and Hong, Y.P. 2002. Genetic variation of populations of Fraxinus mandshurica Rupr. in korea (Oleaceae) based on I-SSR marker analysis. Proceedings of Korean Forest Society. pp. 114-115.
  3. Evanno, G., Reanaut, S., and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  4. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Pakage) version 3.5c. Distributed by the author. Department of Genetics. University of Washington. Seattle, WA. USA.
  5. Foll, M., Beaumont, M.A., and Gaggiotti, O. 2008. An Approximate Bayesian Computation Approach to overcome biases that arise when using amplified fragment length polymorphism markers to study population structure. Genetics 179: 927-939. https://doi.org/10.1534/genetics.107.084541
  6. Hans, A.S. 1981. Compatibility and crossbility studies in Ulmus. Silvae Genetica 30(4-5): 149-152.
  7. Lynch, M., and Milligan, B. 1994. Analysis of population genetic structure using RAPD markers. Molecular Ecology 3: 91-99. https://doi.org/10.1111/j.1365-294X.1994.tb00109.x
  8. Hedrick, P.W. 2004. Recent development in conservation genetics. Forest Ecology and Management 197: 3-19. https://doi.org/10.1016/j.foreco.2004.05.002
  9. Holsinger, K.E., Lewis, P.O., and Dey, D.K. 2002. A Bayesian approach to inferring population structure from dominant markers. Molecular Ecology 11: 1157-1164. https://doi.org/10.1046/j.1365-294X.2002.01512.x
  10. Jang, S.S., Lee, S.W., Kim, C.S., Kim, Y.M., and Kim, H.E. 2003. Genetic diversity and structure of natural populations of Cornus controversa in south korea. Journal of Korean Forestry Society 92(1): 42-51.
  11. Kim, M.Y. and Lee, S.T. 1989. Taxonomical study of the Korean Ulmaceae. Korean Journal of Taxonomy 19(1): 31-78.
  12. Kim, M.Y. 1996. A Taxonomic study of the Korean Ulmaceae based on morphological characters. Korean Journal of Taxonomy 6(3): 163-181.
  13. Kim, Z.S., Lee, S.W., and Hyun, J.O. 1993. Allozyme variation in six native oak species in Korea. Annals Forest Science 50: 253s-260s. https://doi.org/10.1051/forest:19930725
  14. Kramer, A. and Havens, K. 2009. Plant conservation genetics in a changing world. Trends in Plant Science 14(1): 599-607. https://doi.org/10.1016/j.tplants.2009.08.005
  15. Lee, K.H., Cho, C.H., and Yoon, W.H. 2004. In vivo antitumor activity of Mansonone E isolated from Ulmus davidiana var. japonica Nakai. Korean Journal of Pharmacognosy 35(3): 199-202.
  16. Lee, M.K., Sung, S.H., Lee, H.S., Cho, J.H., and Kim, Y.C. 2001. Lignan and neolignan glycosides from Ulmus davidiana var. japonica. Archives of Pharmacal Research 24(3): 198-201. https://doi.org/10.1007/BF02978256
  17. Lee, S.E., Kim, Y.S., Kim, J.E., Bang, J.K., and Seong, N.S. 2004. Antioxidant activity of Ulmus davidiana var. japonica N. and Hemipteleae davidii P. Korean Journal of Medicinal Crop Science 12(4): 321-327.
  18. Lee, S.T and Kim, M.Y. 1985. A palynotaxonomy study of Korean Ulmaceae. Korean Journal of Plant Taxonomy 15(3): 163-174.
  19. Machon, N., Lefranc, M., Bilger, I. Mazer, S.J., and Sarr, A. 1997. Allozyme variation in Ulmus species from France: analysis of differentiation. Heredity 78: 12-20. https://doi.org/10.1038/hdy.1997.2
  20. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13: 1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x
  21. Nybom, H. and Bartish, I.V. 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Evolution and Systematics 3(2): 93-114.
  22. Oubborg, N.J., Piquot, Y., and Groenendael, J.M.V. 1999. Population genetics, molecular markers and the study of dispersal in plants. Journal of Ecology 87: 551-568. https://doi.org/10.1046/j.1365-2745.1999.00389.x
  23. Peakall, R. and Smouse, P.E. 2006. GENEALEX 6: genetic analysis in Excel. population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  24. Potenko, V.V., Koren, O.G., and Verkholat, V.P. 2007. Genetic variation and differentiation in populations of Japanese emperor oak (Quercus dentata Thunb.) and Mongolian oak (Quercus mongolica Fisch. ex Ledeb.) in the south of the Russian far east. Russian Journal of Genetics 43(4): 387-395. https://doi.org/10.1134/S1022795407040060
  25. Pritchard, J.K., Stephens, M., and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
  26. Reddy, M.P., Sarla, N., and Siddiq, E.A. 2002. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128: 9-17. https://doi.org/10.1023/A:1020691618797
  27. Sherman-Broyles, S.L., Broyles, S.B., and Hamrick, J.L. 1992. Geographic distribution of allozyme variation in Ulmus crassifolia. Systematic Botany 17(1): 33-41. https://doi.org/10.2307/2419063
  28. Song, J.H., Kim, N.S., Yi, Y.S., Kim, Y.J., Song, J.M., and Lee, J.S. 2002. Genetic variation of Quercus variabilis in Korea based on RAPD marker analysis. Korean Journal of Genetics 24(2): 189-195.
  29. Song, J.H., Jang, K.H., Lim, H.I., Park, W.G., and Bae. K.H. 2011. Variation of samara, seed, germination and growth characteristcs of Ulmus davidiana var. japonica Nakai populations. Journal of Korean Forestry Society 100(2): 226-231.
  30. Tak, W.S., Choi, C.H., and Kim, T.S. 2006. Change in the seed characteristics and germination properties of Ulmus davidiana var. japonica according to seed collection time. Journal of Korean Forestry Society 95(3): 316-322.
  31. Vakkari, P., Mari, R., and Karkkainen, K. 2009. High genetic diffrentiation in marginal populations of European white elm (Ulmus laevis). Silva Fennica 43(2): 185-196.
  32. Yang, B.H., Han, S.D., Gu, Y.B., and Park, Y.G., 2006. Genetic Variation in the Natural Populations of Korean Stewartia (Stewartia koreana Nakai) Based on I-SSR Analysis. Journal of Korean Plant Resources Society 19(1): 189-195.
  33. Zalapa, J.E., Brunet, J., and Guries, R.P. 2009. Patterns of hybridization and introgression between invasive Ulmus pumila (Ulmaceae) and native Ulmus rubra. American Journal of Botany 96(6): 1116-1128. https://doi.org/10.3732/ajb.0800334
  34. Zalapa, J.E., Brunet, J., and Guries, R.P. 2010. The extent of hybridization and its impact on the genetic diversity and population structure of an invasive tree, Ulmus pumila (Ulmaceae). Evolutionary Applications 3(2): 157-168. https://doi.org/10.1111/j.1752-4571.2009.00106.x
  35. Zhang, X.P., Li, X.H., and Qiu, Y.X. 2006. Genetic diversity of the endangered species Kirengeshoma palmata (Saxifragaceae) in China. Biochemical Systematics and Ecology 34: 38-47. https://doi.org/10.1016/j.bse.2005.05.007

Cited by

  1. Analysis of genetic diversity and differentiation of artificial populations of yellowhorn (Xanthoceras sorbifolium) in China using ISSR markers vol.27, pp.5, 2016, https://doi.org/10.1007/s11676-016-0225-2
  2. Genetic Diversity and Genetic Structure of Acer pseudosieboldianum Populations in South Korea Based on AFLP Markers vol.105, pp.04, 2016, https://doi.org/10.14578/jkfs.2016.105.4.414
  3. Impact of Habitat Damage on Wikstroemia ganpi (Siebold & Zucc.) Maxim. Genetic Diversity and Structure vol.52, pp.2, 2018, https://doi.org/10.14397/jals.2018.52.2.33
  4. ISSR 마커를 이용한 서식 면적에 따른 퉁퉁마디의 유전적 다양성 vol.31, pp.6, 2013, https://doi.org/10.13047/kjee.2017.31.6.492
  5. Genetic diversity and structure of Carpinus laxiflora populations in South Korea based on AFLP markers vol.15, pp.4, 2013, https://doi.org/10.1080/21580103.2019.1666748
  6. Genetic diversity and structure of Prunus padus populations in South Korea based on AFLP markers vol.16, pp.4, 2013, https://doi.org/10.1080/21580103.2020.1807415