DOI QR코드

DOI QR Code

The Effects of Ozone on Photosynthesis, Antioxidative Enzyme Activity and Leaf Anatomical Response in the Indoor Plants and Japanese Red Pine

실내식물과 소나무의 오존에 대한 광합성 능력, 항산화 효소의 활성, 해부학적 반응

  • 이주영 (서울시립대학교 환경원예학과) ;
  • 제선미 (서울시립대학교 환경원예학과) ;
  • 이성한 (서울시립대학교 환경원예학과) ;
  • 우수영 (서울시립대학교 환경원예학과)
  • Received : 2013.09.09
  • Accepted : 2013.10.12
  • Published : 2013.12.31

Abstract

The purpose of this study was to identify the effects of ozone pollution on the one woody species and two indoor plants in controlled environment. Pinus densiflora, Spathiphyllum patinii and Epipremnum aureum seedlings were exposed in both control and ozone chambers to investigate photosynthetic rate, water use efficiency, antioxidative enzyme activities such as GR(Glutathione reductase) and APX(Ascorbate peroxidase) activity and leaf anatomical response. Ozone was fumigated 8 hours for a day with 30 ppb concentration for 50 days. Pinus densiflora seedlings showed no significant difference on photosynthetic rate, water use efficiency, antioxidant enzyme activity during ozone exposure. Ozone concentration (30 ppb in this study) is not high enough to generate ozone damage on Pinus densiflora species. In contrast, ozone generally altered photosynthetic rate, antioxidant enzyme (especially GR) activity and leaf anatomy in two indoor species (Spathiphyllum patinii and Epipremnum aureum) exposed in ozone chamber were significantly differ from those of control in every measurement. These data suggest that two indoor species(Spathiphyllum patinii and Epipremnum aureum) are more sensitive to ozone than Pinus densiflora.

오존에 따른 피해 현상을 관찰해 보고 식물 수종에 따라 어떤 차이가 있는지 알아보기 위해서 소나무(Pinus densiflora)와 실내식물 가운데 많이 활용되는 스파티필름(Spathiphyllum patinii), 스킨답서스(Epipremnum aureum)의 항산화 효소인 GR(Glutathione Reductase), APX(Ascorbate peroxidase)의 활성, 광합성속도와 잎의 해부학적 피해 현상을 관찰하였다. 오존농도는 30 ppb로 유지했고, 50일 동안 하루 8시간(09:00~17:00) 오존을 처리한 후 다음과 같은 결과를 얻었다. 오존 농도가 30 ppb정도의 낮은 농도에서 소나무는 광합성속도, 수분이용효율, 항산화 효소의 활성, 잎의 해부학적인 특성에서 대조구와 크게 다르지 않은 것을 알 수 있었다. 반면에 실내식물인 스파티필름과 스킨답서스의 광합성속도, 항산화 효소의 활성(특히, GR의 활성), 잎의 해부학적 특성이 대조구와 오존 처리구간의 상당한 차이를 보여, 오존에 대한 민감성이 소나무에 비해 큰 것으로 나타났다.

Keywords

References

  1. Aben, J.M.M., Janssen-jurovicov, M., and Adema, E.H. 1990. Effects of low-level ozone exposure under ambient conditions on photosynthesis and stomatal control of Vicia fafa L. Plant, Cell and Environment 13(5): 463-469. https://doi.org/10.1111/j.1365-3040.1990.tb01323.x
  2. Asada, K. 1992. Ascorbate peroxidase-a hydrogen peroxidescavenging enzyme in Plants. Physiologia Plantarum 85: 235-241. https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  3. Ashraf, M., Arfan, M. Shahbaz, M. Ahmad, A., and Jamil, A. 2002. Gas exchange characteristics and water relations in some elite okra cultivars under water deficit. Photosynthetica 40(4): 615-620. https://doi.org/10.1023/A:1024368522742
  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Conklin, P.L. and Barth, C. 2004. Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant, Cell and Environment 27: 959-970. https://doi.org/10.1111/j.1365-3040.2004.01203.x
  6. D'Haese, D., Vandermeiren, K., Asard, H., and Horemans, N. 2005. Other factors than apoplastic ascorbate contribute to the differential ozone tolerance of two clones of Trifolium repens L. Plant, Cell and Environment 28: 623-632. https://doi.org/10.1111/j.1365-3040.2005.01308.x
  7. Grantz, D.A., Silva, V., Toyota, M., and Ott, N. 2003. Ozone increases root respiration but decreases leaf $CO_2$ assimilation in cotton and melon. Journal of Experimental Botany 54(391): 2375-2384. https://doi.org/10.1093/jxb/erg261
  8. Guri, A. 1983. Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Canadian Journal of Plant Science 63(3): 733-737. https://doi.org/10.4141/cjps83-090
  9. Je, S.M., Son, S.G., Woo, S.Y., Byun, K.O., and Kim, C.S. 2006. Photosynthesis and chlorophyll contents of chloranthus glaber under different shading treatments. Korean Society of Agricultural and Forest Meteorology 8(2): 54-60.
  10. Kangasjarvi, J., Talvinen, J., Utriainen, M., and Karjalainen, R. 1994. Plant defense systems induced by ozone. Plant Cell Environment 17: 783-794. https://doi.org/10.1111/j.1365-3040.1994.tb00173.x
  11. Karnosky, D.F., Pregitzer, K.S., Zak, D.R., Kubiske, M.E., Hendrey, G.R. Weinstein, D., Nosal, M., and Percy, K.E. 2005. Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant, Cell and Environment 28: 965-981. https://doi.org/10.1111/j.1365-3040.2005.01362.x
  12. Karpinski S., Reynolds, H., Karpinska, B., Wingsle, C., Creissen G., and Mullineaux, P. 1999. Systemic signaling and acclimation in response to excess excitiation energy in Arabidopsis. Science 284(5414): 654-657. https://doi.org/10.1126/science.284.5414.654
  13. Koch, J.R., Scherzer, A.J., Eshita, S.M., and Davis, K.R. 1998. Ozone sensitivity in hybrid poplar is correlated with a lack of defence-gene activation. Plant Physiology 188(4): 1243-1252.
  14. Lehnherr, B., Michier, F., Grandjean, A., and Fuhrer, J. 1988. The regulation of photosythesis in leaves of field-grown spring wheat (Triticum aestivum L., cv Albis) at different levels of ozone in ambient air. Plant Physiology 88(4): 1115-1119. https://doi.org/10.1104/pp.88.4.1115
  15. Lim, J.H., Woo, S.Y., Kwon, M.J., Chun, J.H., and Shin, J.H. 2006. Photosynthetic capacity and water use efficiency under different temperature regimes on healthy and declining Korean fir in MT. Halla. Journal of Korean Forestry Society 95(6): 705-710.
  16. Mansfield, T.A. and Person, M. 1996. Disturbances in stomatal behavior in plant exposed to air pollution. pp. 179. In: Yunus, M. and Iqbal, M. (eds.). Plant response to air pollution. John Wiley & Sons, New York.
  17. May, M., Vernoux, T., Leaver, C., van Montagu, M., and Inze, D. 1998. Glutathione homeostasis in plants: implications for environmental sensing and plant development. Journal of Experimental Botany 49(321): 649-667.
  18. Meloni, D.A., Oliva, M.A., Martinez, C.A., and Cambraia, J. 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany 49(1): 69-76. https://doi.org/10.1016/S0098-8472(02)00058-8
  19. Pasqualini, S., Picciono, C., Reale, L., Ederli, L., Torre, G.D., and Ferranti, F. 2003. Ozone-induced cell death in Tobacco cultivar Bel W3 plants. The role of programmed cell death in lesion formation. Plant Physiology 133(3): 1122-1134. https://doi.org/10.1104/pp.103.026591
  20. Paoli, L., Corsini, A., Bigagli, V., Vannini, J., Bruscoli, C., and Loppi, S. 2012. Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environmental Pollution 161: 284-290. https://doi.org/10.1016/j.envpol.2011.06.005
  21. Peng, C., Ouyang, Z. Wang, M. Chen, W., and Jiao, W. 2012. Vegetative cover and PAHs accumulation in soils of urban green space. Environmental Pollution 161: 36-42. https://doi.org/10.1016/j.envpol.2011.09.027
  22. Rao, M.V., Paliyath, G., and Ormrod, D.P. 1996. Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology 110(1): 125-136. https://doi.org/10.1104/pp.110.1.125
  23. Rao, M.V. and Dubey, P.S. 1990. Biochemical aspects (antioxidants) for development of tolerance in plants growing at different low levels of ambient air pollutants. Environmental Pollution 64(1): 55-66. https://doi.org/10.1016/0269-7491(90)90095-T
  24. Reich, P.B. and Amundson, R.G. 1985. Ambient levels of ozone net photosynthesis in tree and crop species. Scince 230: 566-570. https://doi.org/10.1126/science.230.4725.566
  25. Wang K.Y., Kellomaki, S., and Zha, T. 2003, Modifications in photosynthetic pigments and chlorophyll fluorescence in 20-year-old pine trees after a four exposure to carbon dioxide and temperature elevation. Photosynthetica 41(2): 167-175. https://doi.org/10.1023/B:PHOT.0000011948.00870.db
  26. Wohlgemuth, H., Mittelstrass, K., Kschieschan, S., Bender, J., Weigel, H.J., Overmyer, K., Kangasjarvi, J., Sandermann, H., and Langebartels, C. 2002. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant, Cell and Environment 25: 717-726. https://doi.org/10.1046/j.1365-3040.2002.00859.x
  27. Woo, S.Y. 2006. Trends of several air pollutants and the effects of ozone on the plant antioxidant system in Platanus occidentalis in Korea. Journal of Korean Forestry Society 95(2): 183-187.
  28. Woo, S.Y., Kwon, K.W. Lee, J.C., Choi, J.H., and Kang, B.S. 2003. Recovery of net photosynthetic rate after $SO_2$ fumigation in Quercus accutissima, Pinus densiflora, Populus alba ${\time}$ glandulosa and Acanthopanax sessiliflorus. Photosynthetica, 41(2): 319-320. https://doi.org/10.1023/B:PHOT.0000011971.85208.8f
  29. Woo, S.Y. 1997. Growth, photosynthesis and rubisco activity of resistant hybrid poplar (Populus trichocarpa ${\time}$ P. deltoides) to ozone exposure-A link with compensatory stratey. Journal of Korean Forestry Society 86(1): 80-86.
  30. Yukihiro, M., Hiramatsu, T., Bouteau, F., Kadono, T., and Kawano, T. 2012. Peroxyacetyl nitrate-induced oxidative and calcium signaling events leading to cell death in ozonesensitive tobacco cell-line. Plant Signaling & Behavior 7(1): 113-120. https://doi.org/10.4161/psb.7.1.18376

Cited by

  1. The Performance Stability of Ophthalmic Material with UV-Block Effect Containing Hydroxyl Benzophenone Group and Tungsten Nanoparticles vol.61, pp.3, 2013, https://doi.org/10.5012/jkcs.2017.61.3.97
  2. Effects of elevated ozone on physiological, biochemical and morphological characteristics of eggplant vol.60, pp.6, 2013, https://doi.org/10.1007/s13580-019-00177-x
  3. 주요 가로수 묘목의 오존노출에 따른 대기오염내성지수 비교 vol.109, pp.1, 2013, https://doi.org/10.14578/jkfs.2020.109.1.50