DOI QR코드

DOI QR Code

Analysis of Acoustic Target Strength for the Submarine with Alberich Anechoic Coating Effects

알베리히 무반향 코팅재 효과를 고려한 잠수함의 음향 표적강도 해석

  • Kwon, Hyun-Wung (Research Institute of Marine Systems Engineering, Seoul National University) ;
  • Hong, Suk-Yoon (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Kim, Hwa-Muk (Department Combatant Ships Project Team, Naval Ship Program, Defense Acquisition Program Administration) ;
  • Song, Jee-Hun (Department of Naval Architecture and Ocean Engineering, Chonnam National University)
  • 권현웅 (서울대학교 해양시스템공학연구소) ;
  • 홍석윤 (서울대학교 조선해양공학과) ;
  • 김화묵 (방위사업청 함정사업부 전투함사업팀) ;
  • 송지훈 (전남대학교 조선해양공학전공)
  • Received : 2013.07.16
  • Accepted : 2013.08.28
  • Published : 2013.08.31

Abstract

Acoustic target strength (TS) is one of the most considerable design elements for survival capacities of the submarine. It needs to reduce acoustic TS that submarines are getting larger and larger, Alberich anechoic coatings are widely used as the representative method. In this paper, the finite element method (FEM) is used to analyze the reflection and transmission coefficients of Alberich anechoic coatings, which have periodic unit cells. The FEM results are compared with experimental results in the literature. Moreover, acoustic TS for the submarine is analyzed by using that result. Finally, it is shown that acoustic TS (Case 1: 10dB, Case 2: 6dB) are reduced due to the use of Alberich anechoic coatings.

음향 표적강도는 잠수함의 생존성을 보장하기 위한 중요한 설계 고려 요소이다. 잠수함이 대형화 됨에 따라 음향 표적강도 저감을 위한 대표적인 방법으로 알베리히 무반향 코팅재가 널리 사용되고 있다. 본 논문에서는 규칙적으로 배열된 알베리히 무반향 코팅재 단위 셀에 대해 유한요소법을 이용하여 음압 투과반사 계수를 해석하였다. 해석 결과는 문헌의 실험결과와 비교 검증하였다. 또한, 잠수함의 음향 표적강도 계산시 해석된 코팅재의 입력 임피던스를 이용하여 반사계수를 고려하였다. 마지막으로 알베리히 무반향 코팅재 적용에 따른 음향 표적강도 감소 효과(Case 1: 10dB, Case 2: 6dB)를 확인하였다.

Keywords

References

  1. Achenbach, J. D., C. Y. Lu and M. Kitahara(1988), 3-D reflection and transmission of sound by an array of rods, Journal of Sound and Vibration, Vol. 125, pp. 463-476. https://doi.org/10.1016/0022-460X(88)90254-4
  2. Boo, S. Y.(2001), Computation of RCS and TES of Curved Objects Using a Curved-Patch Physical Optics Method, Journal of the Society of Naval Architects of Korea, Vol. 38, No. 1, pp. 62-71.
  3. Cai, C., K. C. Hung and M. S. Khan(2006), Simulationbased analysis of acoustic absorbent lining subject to normal plane wave incidence, Journal of Sound and Vibration, Vol. 291, pp. 656-680. https://doi.org/10.1016/j.jsv.2005.06.032
  4. Choi, Y. H., K. C. Shin, J. S. You, J. S. Kim, W. H. Joo, Y. H. Kim, J. H. Park, S. M. Choi and W. S. Kim(2005), Numerical Modeling and Experimental Verification for Target Strength of Submerged Objects, Journal of Ocean Engineering and Technology, Vol. 19, No. 1, pp. 64-70.
  5. Easwaran, V. and M. L. Munjal(1993), Analysis of reflection characteristics of a normal incidence plane wave on resonant sound absorbers: A finite element approach, Journal of the Acoustic Society of America, Vol. 93, No. 3, pp. 1308-1318. https://doi.org/10.1121/1.405416
  6. Hennion, A. C. and J. N. Decarpigny(1991), Analysis of the scattering of a plane acoustic wave by a doubly periodic elastic structure using the finite element method: Application to Alberich anechoic coatings, Journal of the Acoustic Society of America, Vol. 90, pp. 3356-3367. https://doi.org/10.1121/1.401395
  7. Kim, K. H., D. S. Cho and J. C. Kim(2005), High Frequency Acoustic Scattering Analysis of Underwater Target, Journal of the Society of Naval Architects of Korea, Vol. 42, No. 5, pp. 528-533. https://doi.org/10.3744/SNAK.2005.42.5.528
  8. Oberst, H.(1957), Resonant sound absorbers, in Technical aspects of sound, edited by E. G. Richardson, Elsevier, Amsterdam, Chap. 7, pp. 287-327.
  9. Panigrahi, S. N., C. S. Jog and M. L. Munjal(2008), Multi-focus design of underwater noise control linings based on finite element analysis, Applied Acoustics, Vol. 69, pp. 1141-1153. https://doi.org/10.1016/j.apacoust.2007.11.012
  10. Schneider, H. G., R. Berg, L. Gilroy, I. Karasalo, I. MacGillivray, M. T. Morshuizen and A. Volker(2003), Acoustic Scattering by a Submarine: Results from a Benchmark Target Strength Simulation Workshop, ICSV10, pp. 2475-2482.
  11. Urick, R. J.(1983), Principles of underwater sound, 3rd Edition, Mcgraw-Hill, New York, pp. 291-327.

Cited by

  1. Development of Radar Cross Section Analysis Program for Complex Structures vol.20, pp.4, 2014, https://doi.org/10.7837/kosomes.2014.20.4.435
  2. 소형화된 헬름홀츠 공진기를 이용한 수중 반향음 감소해석 모의실험 vol.38, pp.1, 2013, https://doi.org/10.7776/ask.2019.38.1.067
  3. Design and realization of cap-shaped cilia MEMS vector hydrophone vol.183, pp.None, 2013, https://doi.org/10.1016/j.measurement.2021.109818