DOI QR코드

DOI QR Code

Effects of Fuel Injection Timing on Performance in Old Marine Diesel Engine (Using M/S "Hae Rim" of Training Ship)

선박용 노후 디젤기관의 성능에 미치는 연료 분사시기의 영향(실습선 "해림호"를 중심으로)

  • Received : 2013.08.28
  • Accepted : 2013.10.25
  • Published : 2013.10.31

Abstract

In this study, the generator engine of training ship M/S "HAE RIM" of Kunsan National University which is being operated for 20 years was used in the experiment. The experiment was carried out under the engine speed of 1200rpm, then the load was varied 30 kW intervals from 0 to 90 kW and the injection timing was varied $2^{\circ}$CA intervals from BTDC $19^{\circ}$ to $23^{\circ}$CA. In the case of advancing fuel injection timing from BTDC $21^{\circ}$CA to $23^{\circ}$CA, specific fuel consumption is decreased by 1.37%, NOx is increased by 11.59 %, soot is decreased by 23.5 % and $SO_2$ is decreased by 2.8 %. Accoring to the analysis of effects of fuel injection timing on combustion & exhaust emissions characteristics on an old marine diesel engine, it is proved that the optimum fuel injection timing is BTDC $23^{\circ}$ which is $2^{\circ}$ faster than that of original injection timing.

본 연구에서는 건조 후 20여년 운항한 군산대학교 실습선 해림호의 발전기를 대상으로 직접 선박현장에서 실험하여 최적 연료 분사시기를 규명해서 선박의 경제적이고 친환경적인 운항에 도움을 주고자 연구하였다. 실험은 기관회전속도 1,200 rpm으로 일정히 유지하고, 기관부하를 0 kW에서 90 kW까지 30 kW간격으로 변화시켰으며, 연료분사시기는 BTDC $19^{\circ}$에서 $23^{\circ}$까지 $2^{\circ}$ 간격으로 변화시키면서 실험하였다. 실험결과 연료분사시기를 BTDC $21^{\circ}$에서 BTDC $23^{\circ}$로 앞당길 경우, 연료소비율은 1.37 % 감소하였고, 질소산화물은 11.59 % 증가하였으며, 매연은 23.5 % 감소하였고, 아황산가스는 2.8 % 감소하였다. 따라서 노후 발전기 엔진에 있어서 연료분사시기가 연소특성 및 배기배출물특성에 미치는 영향을 종합적으로 분석 고찰한 결과, 최적 연료분사시기는 원래의 분사시기보다 $2^{\circ}$ 앞당겨진 BTDC $23^{\circ}$로 확인되었다.

Keywords

References

  1. Bowman, C. T.(1975), Kinetics of Pollutant Formation and Destruction in Combustion, Progress Energy & Combustion Science, 1, pp. 33-45. https://doi.org/10.1016/0360-1285(75)90005-2
  2. Jung, S. H., M., S. Kim, S. H, Jang, D. K. Koh, and S. K. Ahn(2004), Analysis of Combustion Characteristics of Bio Diesel Fuel in a DI Diesel Engine Using PXI and LabVIEW, Journal of the Korea Society for Power System Engineering, Vol. 8, No. 2, pp.12-17.
  3. Kanne, D. D. and R. Y. Iwamoto(1988), A Novel Approach to the Control of Heavy-Duty Diesel Particulate Emissions, SAE 880634, pp. 1-12.
  4. Lim, J. K and S. G. Cho(2008), Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DI Diesel Engine, Journal of the Korean Society of Marine Environment & Safety, Vol. 14, No. 1, pp. 83-87.
  5. Lim, J. K and S. G. Cho(2012a), Effects of Fuel Injection Timing on Exhaust Emissions Characteristics of Biodiesel Blend Oil in Diesel Engine, KOSME, Vol. 36, No. 5, pp. 603-608.
  6. Lim, J. K and S. G. Cho(2012b), Effects of Fuel Injection Timing on Combustion Characteristics of Biodiesel Blend Oil in Diesel Engine, KSPSE, Vol. 16, No. 3, pp. 10-15.
  7. Miyamoto, N. and H., Ogawa(1990), Analysis of Diesel Soot Formation under Varied Ignition Lag with a Laser Light Extinction Method, SAE 900640, pp. 1-6.
  8. Needham, J. R., M. P. May, D. M. Doyle, S. A. Faulkner, and H. Ishiwata(1990), Injection Timing and Rate Control a Solution for Low Emissions, SAE 900854, pp. 8-10.
  9. Pradeep, V. and R. P. Sharma(2007), Use of HOT EGR for NOx control in a compression ignition engine fuelled with bio-diesel from Jatropha oil, Renewable Energy, Vol. 32, pp. 1136-1154. https://doi.org/10.1016/j.renene.2006.04.017
  10. Ryu, K. H. and Y. T. Oh(2007), Combustion Characteristics and Durability of Diesel Engines Burning BDF 20, Transactions of KSAE, Vol. 15, No. 3, pp. 18-28.
  11. Ryu, K. H. and Y. T. Oh(2004), Durability Test of a Direct Injection Diesel Engine Using Biodiesel Fuel, Journal of the Korean Society of Automotive Engineers, Vol. 12, No. 1, p. 32.
  12. Satoh, K., Takahashi, S., Nishinura, T. and K., Yokota(1997), Effect of Fuel Injection Rate Profile on Combustion and Emissions in a DI Diesel Engine, SAE 971259, pp. 29-34.

Cited by

  1. Energy efficiency improvements in part load for a marine auxiliary diesel engine vol.38, pp.7, 2014, https://doi.org/10.5916/jkosme.2014.38.7.877
  2. A Study on the Engine Performance Analysis Due to Increase of Ship's Age vol.16, pp.2, 2013, https://doi.org/10.17958/ksmt.16.2.201404.1315
  3. A review of NOx and SOx emission reduction technologies for marine diesel engines and the potential evaluation of liquefied natural gas fuelled vessels vol.766, pp.None, 2013, https://doi.org/10.1016/j.scitotenv.2020.144319