DOI QR코드

DOI QR Code

반응표면분석에 의한 발효 청미래덩굴(Smilax china L.) 잎 열수 추출조건의 최적화

Establishment of hot water extraction conditions for optimization of fermented Smilax china L. using response surface methodology

  • 김재원 (대구가톨릭대학교 식품공학전공) ;
  • 이상일 (계명문화대학 식품영양조리학부) ;
  • 이예경 (명지대학교 생명과학정보학부) ;
  • 양승환 (명지대학교 생명과학정보학부) ;
  • 김순동 (명지대학교 생명과학정보학부) ;
  • 서주원 (명지대학교 생명과학정보학부)
  • Kim, Jae-Won (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Lee, Sang-Il (Department of Food, Nutrition and Cookery, Keimyung College) ;
  • Lee, Ye-Kyung (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Yang, Seung Hwan (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Kim, Soon-Dong (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Suh, Joo-Won (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University)
  • 투고 : 2013.08.20
  • 심사 : 2013.09.30
  • 발행 : 2013.10.30

초록

본 연구는A oryzae 발효시킨 청미래덩굴잎의 차로서의 최적 물 추출조건을 확립하기 위하여 농도, 추출온도 및 추출시간을 독립변수로 하고, 종속변수로는 항 통풍 및 항 알코올성 복부비만과 같은 청미래덩굴 본래의 기능성과 관련하여 total polyphenol(TP) 및 total flavonoid(TF) 함량, 발효에 의하여 생성되는 색상물질의 함량($OD_{475}$), xanthine oxidase 및 aldehyde oxidase 저해활성(XOI 및 AOI)을 측정함과 동시에 차로서의 품질과 관련이 있는 색상, 수용성 고형물의 양, 전자공여능(EDA) 및 종합적인 기호도(OA)를 반응표면분석법(response surface methodology)을 통하여 예측하였다. 반응표면에 대한 이차다중회귀방정식의 결정계수($R^2$)는 EDA(0.69), XOI(0.78)을 제외하고는 모든 종속변수들이 0.85~0.98범위로 높은 적합도를 나타내었다. 그러나 EDA와 XOI의 활성은 저 농도에서도 비교적 높은 활성을 나타내었다. 결정계수가 0.8이상으로 나타난 종속변수에 대하여 반응표면분석을 행한 결과 모든 변수들에서 다 같이 농도가 추출에 가장 큰 영향을 미쳤으며 TP, $a^*$$b^*$값, $OD_{475}$, WSS 및 AOI는 1%수준에서 유의성을 나타내었고, OA는 5%수준에서 유의성을 나타내었다. 추출온도의 경우는 $a^*$$b^*$, $OD_{475}$, WSS의 함량이 5%수준에서 유의성을 나타내었다. 청미래덩굴잎의 기능성과 관련하여 가장 중요한 요소의 하나인 AOI는 농도 2.19%, 추출온도 $90.02^{\circ}C$, 추출시간 4.03 min이 최적 조건으로 나타났으며 이때의 AOI 값은 59.48% ($R^2$: 0.93, p<0.007) 이었다. 통풍과 음주에 의한 복부비만과 관련이 있는 XO와 AO의 저해활성을 뒷받침하는 TP 및 TF 함량, $OD_{475}$ 그리고 차의 품질과 관련된 색상 및 종합적인 기호도 등 모든 종속변수를 만족시킬 수 있는 최적 물 추출조건의 범위는 농도 1.6~1.8%, 추출온도 $83{\sim}93^{\circ}C$, 추출시간 3.4~4.4 min이었으며 최적조건은 농도 1.7%, 추출온도 $88^{\circ}C$, 추출시간 3.9 min 이었다.

In this study, we investigated the contents of total polyphenol (TP), total flavonoid, and absorbance at 475 nm ($OD_{475}$) which may produced in solid-fermented leaf of Smilax china L. by Aspergillus oryzae as a new functional components with reddish brown color, contents of water soluble substance (WSS), electron donating ability (EDA), Hunter $L^*$, $a^*$, $b^*$ values, sensory overall acceptability (OA) and also, the inhibitory activities (XOI and AOI) against partial purified xanthine oxidase (XO) and aldehyde oxidase (AO) from rabbit liver which were well known to relate the gout, and alcoholic liver disease, respectively in order to optimize water extraction using response surface methodology (RSM). All the $R^2$ values of the second-order polymonials ranged from 0.85 to 0.98, except for the EDA (0.69) and the XOI (0.78). However, the activities of the EDA and XOI were relatively high in the lower concentration of the fermented Smilax china L. leaf. The effects on the water extraction were highest in the concentration, among the dependent variables, and showed significant differences at the 1% level in the TP, TF and WSS contents and the $a^*$, $b^*$ and $OD_{475}$ values, but the OA showed significant differences at the 5% level. The optimal values of AOI, which was the most important functionality in the Smilax china L. that was predicted via RSM, were 59.48% at the 2.19% concentration, a $90.02^{\circ}C$ extraction temperature and a 4.03 minute extraction time ($R^2$: 0.93, p<0.007). The ranges of all the dependent variables of the optimal water extraction were 1.6~1.8% for the concentration, $83{\sim}93^{\circ}C$ for the temperature and 3.4~4.4 minutes for the extraction time; and the optimal water extraction conditions were a 1.7% concentration, an $88^{\circ}C$ extraction temperature and a 3.9-min extraction time.

키워드

참고문헌

  1. Song HS, Park YH, Jung SH, Kim DP, Jung YH, Lee MK, Moon KY (2006) Antioxidant activity of extracts from Smilax china root. J Korean Soc Food Sci Nutr, 35, 1133-1138 https://doi.org/10.3746/jkfn.2006.35.9.1133
  2. Choi HY (2004) Antimicrobial effect of ethanol extract of Smilax china leaf. Korean J Sanitation, 19, 22-30
  3. Cha BC, Lee EH (2007) Antioxidant activities of flavonoids from the leaves of Smilax china Linne. Korean J Pharmacogn, 38, 31-36
  4. Cheng DS, Hua XL (2006) Today's research of Smilax china. J Chin Med Mater, 29, 90-93
  5. Shu XS, Gao ZH, Yang XL (2006) Anti-inflammatory and anti-nociceptive activities of Smilax china L. aqueous extract. J Ethnopharmacol, 103, 327-332 https://doi.org/10.1016/j.jep.2005.08.004
  6. Li YL, Gan GP, Zhang HZ, Wu HZ, Li CL, Huang YP, Liu YW, Liu JW (2007) A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. J Ethnopharmacol, 113, 115-1124 https://doi.org/10.1016/j.jep.2007.05.016
  7. Chena L, Yina H, Lanb Z, Maa S, Zhanga C, Yanga Z, Li P, Linc B (2011) Anti-hyperuricemic and nephroprotective effects of Smilax china L. J Ethnopharmacology, 135, 399-405 https://doi.org/10.1016/j.jep.2011.03.033
  8. Ham YK and Kim SW (2004) Protective effects of plant extract on the hepatocytes of rat treated with carbon tetrachloride. J Korean Soc Food Sci Nutr, 33, 1246-1251 https://doi.org/10.3746/jkfn.2004.33.8.1246
  9. Al-Salmy HS (2001) Individual variation in hepatic aldehyde oxidase activity. IUBMB Life, 51, 249-253 https://doi.org/10.1080/152165401753311799
  10. Kundu TK, Hille R, Velayutham M, Zweier JL (2007) Characterization of superoxide production from aldehyde oxidase: an important source of oxidants in biological tissues. Arch Biochem Biophys, 460, 113-121 https://doi.org/10.1016/j.abb.2006.12.032
  11. Beedham C (1987) Molybdenum hydroxylases: biological distribution and substrate-inhibitor specificity. Prog Med Chem, 24, 85-121 https://doi.org/10.1016/S0079-6468(08)70420-X
  12. Kitamura S, Sugihara K, Ohta S (2006) Drug-metabolizing ability of molybdenum hydroxylases. Drug Metab Pharmacokinet, 21, 83-98 https://doi.org/10.2133/dmpk.21.83
  13. Hirao Y, Kitamura S, Tatsumi, K (1994) Epoxide reductase activity of mammalian liver cytosols and aldehyde oxidase. Carcinogenesis, 15, 739-743 https://doi.org/10.1093/carcin/15.4.739
  14. Sugihara K, Kitamura S, Tatsumi K (1996) Involvement of mammalian liver cytosols and aldehyde oxidase in reductive metabolism of zonisamide. Drug Metab Dispos, 24, 199-202
  15. McCrystal MR, Evans BD, Harvey VJ, Thompson PI, Porter DJ, Baguley BC (1999) Phase I study of the cytotoxic agent N-[2-(dimethylamino)ethyl]acridine-4- carboxamide. Cancer Chemother Pharmacol, 44, 39-44 https://doi.org/10.1007/s002800050942
  16. Shaw S, Jayatilleke E (1990) The role of aldehyde oxidase in ethanol-induced hepatic lipid peroxidation in the rat. Biochem J, 268, 579-583
  17. Conklin, D, Prough R, Bhatanagar A (2007) Aldehyde metabolism in the cardiovascular system. Mol Biosyst, 3, 136-150 https://doi.org/10.1039/b612702a
  18. Weigert J, Neumeier M, Bauer S, Mages W, Schnitzbauer AA, Obed A, Grooschl B, Hartmann A, Schaaffler A, Aslanidis C, Schöolmerich J, Buechler C (2008) Smallinterference RNA-mediated knock-down of aldehyde oxidase 1 in 3T3-L1 cells impairs adipogenesis and adiponectin release. FEBS Lett, 582, 2965-2972 https://doi.org/10.1016/j.febslet.2008.07.034
  19. Pryde DC, Dalvie D, Hu Q, Jones P, Obach RS, Tran TD (2010). Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J Med Chem, 53, 8441-8460 https://doi.org/10.1021/jm100888d
  20. Garattini E, Terao M (2011) Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metab Rev, 43, 374-386 https://doi.org/10.3109/03602532.2011.560606
  21. Lee GD, Kim JO, Son JH, Kim HY (2012) Monitoring on physicochemical properties of Liriope platyphylla by the use of four dimensional response surface. Korean J Food Preserv, 19, 560-568 https://doi.org/10.11002/kjfp.2012.19.4.560
  22. Park MZ, Kim ID, Kim SD (2001) Effect of rice addition on enzyme activities of soybean Meju fermented by Monascus spp. Korean J Postharvest Sci Technol, 8, 405-411
  23. Machida M (2002) Progress of Aspergillus oryzae genomics. Adv Appl Microbial, 51, 81-106 https://doi.org/10.1016/S0065-2164(02)51002-9
  24. Myers RH (1971) Response Surface Methodology. Allyn and Bacon Inc, Boston, p 132
  25. Minussi RC, Rossi M, Bologna L, Cordi L, Rotilio D, Pastore GM, Duran N (2003) Phenolic compounds and total antioxidant potential of commercial wines. Food Chem, 82, 409-416 https://doi.org/10.1016/S0308-8146(02)00590-3
  26. Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG (2005) Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem, 91, 571-577 https://doi.org/10.1016/j.foodchem.2004.10.006
  27. Blois MS (1958) Antioxidant determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  28. Rajagopalan KV, Fridovich I, Handler P (1962) Hepatic aldehyde oxidase I. Purification and properties. J Biol Chem, 237, 922-928
  29. Stirpe F, Della Corte E (1969) The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem, 244, 3855-3863
  30. Lee KW, Lee SK, Lee BD (2006) Aspergillus oryzae as probiotic in poultry-A review. Int J Poultry Sci 5, 1-3. https://doi.org/10.3923/ijps.2006.1.3
  31. Lee SI, Lee YK, Kim SD, Kang YH, Suh JW (2012) Antioxidative activity of Smilax china L. leaf teas fermented by different strains. Korean J Food Nutr, 25, 807-819 https://doi.org/10.9799/ksfan.2012.25.4.807
  32. Hamzeh-Mivehroud M, Rahmani S, Rashidi MR, Hosseinpour Feizi MA, Dastmalchi S (2013) Structurebased investigation of rat aldehyde oxidase inhibition by flavonoids. Xenobiotica, 43, 661-670 https://doi.org/10.3109/00498254.2012.755228
  33. Angayarkanni J, Palaniswamy M, Murugesan S, Swaminathan K (2002) Improvement of tea leaves fermentation with Aspergillus spp. pectinase. J Biosci Bioeng, 94, 299-303 https://doi.org/10.1016/S1389-1723(02)80167-0
  34. Zhong X, Peng L, Zheng S, Sun Z, Ren Y, Dong M, Xu A (2004) Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Express Purif, 36, 165-169 https://doi.org/10.1016/j.pep.2004.04.016
  35. Arakawa H, Maeda M, Okubo S, Shimamura T (2004) Role of hydrogen peroxide in bactericidal action of catechin. Biol Pharm Bull, 27, 277-281 https://doi.org/10.1248/bpb.27.277
  36. Osawa T (1994) Novel natural antioxidant for utilization in food and biological system. In Postharvest Biochemistry of Plant Food Material in the Tropics. Uritani I, Garcia VV, Mendoza EM, eds. Japan Scientific Societies Press, Tokyo, Japan. p 241-251
  37. Bode AM, Dong Z (2003) Signal transduction pathway: Targets for green and black tea. J Biochem Mol Biol, 36, 66-77 https://doi.org/10.5483/BMBRep.2003.36.1.066
  38. Sin HN, Yusof S, Hamid NSA, Rahman RA (2006) Optimization of hot water extraction for sapodilla juice using response surface methodology. J Foods Eng, 74, 352-358 https://doi.org/10.1016/j.jfoodeng.2005.03.005
  39. Joglekar AM, May AT (1987) Product excellence through design of experiments. Cereal Foods World, 32, 857-868
  40. Kang JR, Lee SJ, Kwon HJ, Kwon MH, Sung NJ (2012) Establishment of extraction conditions for the optimization of the black garlic antioxidant activity using the response surface methodology. Korean J Food Preserv, 19, 577-585 https://doi.org/10.11002/kjfp.2012.19.4.577
  41. Torel J, Cillard J, Cillard P (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochem, 25, 383-385 https://doi.org/10.1016/S0031-9422(00)85485-0
  42. Choi CH, Song ES, Kim SJ, Kang MH (2003) Antioxidative activities of Castanea crenata Flos. methanol extracts. Korean J Food Sci Technol, 35, 1216-1220
  43. Holasova M, Fiedlerova V, Smrcinova H, Orsak M, Lachman J, Vavreinova S (2002) Buckwheat the source of antioxidant activity in functional foods. Food Res Int, 35, 207-211 https://doi.org/10.1016/S0963-9969(01)00185-5
  44. Kang YH, Park YK, Oh SR, Moon KD (1995) Studies on the physiological functionality of pine needle and mugwort extracts. Korean J Food Sci Technol, 27, 978-984
  45. Yamaguchi Y, Matsumura T, Ichida K, Okamoto K, Nishino T (2007) Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. J Biochem, 141, 513-524 https://doi.org/10.1093/jb/mvm053
  46. Rashidi MR, Nazemiyeh H (2010) Inhibitory effects of flavonoids on molybdenum hydroxylases activity. Expert Opin Drug Metab Toxicol, 6, 133-152 https://doi.org/10.1517/17425250903426164
  47. Dambrova M, Uhlen S, Welch CJ, Wikberg JES (1998) Identification of an N-hydroxyguanidine reducing activity of xanthine oxidase. Eur J Biochem, 257, 178-184 https://doi.org/10.1046/j.1432-1327.1998.2570178.x
  48. Moriwaki Y, Yamamoto T, Nasako Y, Takahashi S, Suda M, Hiroishi K, Hada T, Higashino K (1993) In vitro oxidation of pyrazinamide and allopurinol by rat liver aldehyde oxidase. Biochem Pharmacol, 46, 975-981 https://doi.org/10.1016/0006-2952(93)90661-F
  49. Ali S, Pawa S, Naime M, Prasad R, Ahmad T, Farooqui H, Zafar H (2008) Role of mammalian cytosolic molybdenum Fe-S flavin hydroxylases in hepatic injury. Life Sci, 82, 780-788 https://doi.org/10.1016/j.lfs.2008.01.011
  50. Neumeier M, Weigert J, Schäaffler A, Weiss TS, Schmidl C, Büuttner R, Bollheimer C, Aslanidis C, Schöolmerich J, Buechler C (2006) Aldehyde oxidase 1 is highly abundant in hepatic steatosis and is downregulated by adiponectin and fenofibric acid in hepatocytes in vitro. Biochem Biophys Res Commun, 350, 731-735 https://doi.org/10.1016/j.bbrc.2006.09.101
  51. Lee YK, Lee SI, Kim JS, Yang SH, Lee IA, Kim SD, Suh JW (2012) Antioxidant activity of green tea fermented with Monascus pilosus. J Appl Biol Chem, 55, 19-25 https://doi.org/10.3839/jabc.2011.054
  52. Owuor PO, Obanda M, Nyirenda HE, Mphangwe NIK, Wright LP, Apostolides Z (2006) The relationship between some chemical parameters and sensory evaluations for plain black tea (Camellia sinensis) produced in Kenya and comparison with similar teas from Malawi and South Africa. Food Chem, 97, 644-653 https://doi.org/10.1016/j.foodchem.2005.04.027
  53. Chen CH, Chan HC, Chang YN, Liu BL, Chen YS (2000) Effects of bacterial strains on sensory quality of Puerh tea in an improved pile-fermentation process. J Sens Stud, 24, 534-553
  54. Halder B, Pramanick S, Mukhopadhyay S, Giri AK (2006) Anticlastogenic effects of black tea polyphenols theaflavins and thearubigins in human lymphocytes in vitro. Toxicol In Vitro, 20, 608-613 https://doi.org/10.1016/j.tiv.2005.10.010

피인용 문헌

  1. 반응표면 분석법에 의한 표고균사체발효 적하수오 열수 추출조건의 최적화 vol.16, pp.1, 2013, https://doi.org/10.14480/jm.2018.16.1.22